Abstract:
A method has been developed to overcome deficiencies in the prior art in the properties and fabrication of semi-polar group III-nitride templates, films, and materials. A novel variant of hydride vapor phase epitaxy has been developed that provides for controlled growth of nanometer-scale periodic structures. The growth method has been utilized to grow multi-period stacks of alternating AlGaN layers of distinct compositions. The application of such periodic structures to semi-polar III-nitrides yielded superior structural and morphological properties of the material, including reduced threading dislocation density and surface roughness at the free surface of the as-grown material. Such enhancements enable to fabrication of superior quality semi-polar III-nitride electronic and optoelectronic devices, including but not limited to transistors, light emitting diodes, and laser diodes.
Abstract:
A method to grow single phase group III-nitride articles including films, templates, free-standing substrates, and bulk crystals grown in semi-polar and non-polar orientations is disclosed. One or more steps in the growth process includes the use of additional free hydrogen chloride to eliminate undesirable phases, reduce surface roughness, and increase crystalline quality. The invention is particularly well-suited to the production of single crystal (11.2) GaN articles that have particular use in visible light emitting devices.
Abstract:
The geometry of transition from cylindrical to rectangular shape through the conical part in hydride vapor phase epitaxial (HVPE) systems for deposition of III-nitride films is disclosed. It is used to ensure the laminar gas flow inside the growth zone of the system. For the velocity of flow within the atmospheric pressure reactor to be sufficient, the precursors are injected through the narrow diameter tubing injectors. The quartz reactor geometry is introduced to control the transition from jet to laminar flow.
Abstract:
A method for growing on a substrate strongly aligned uniform cross-section semiconductor composite nanocolumns is disclosed. The method includes: (a) forming faceted pyramidal pits on the substrate surface; (b) initiating nucleation on the facets of the pits; and; (c) promoting the growth of nuclei toward the center of the pits where they coalesce with twinning and grow afterwards together as composite nanocolumns. Multi-quantum-well, core-shell nanocolumn heterostructures can be grown on the sidewalls of the nanocolumns. Furthermore, a continuous semiconductor epitaxial layer can be formed through the overgrowth of the nanocolumns to facilitate fabrication of high-quality planar device structures or for light emitting structures.
Abstract:
A method for growing on a substrate strongly aligned uniform cross-section semiconductor composite nanocolumns is disclosed. The method includes: (a) forming faceted pyramidal pits on the substrate surface; (b) initiating nucleation on the facets of the pits; and; (c) promoting the growth of nuclei toward the center of the pits where they coalesce with twinning and grow afterwards together as composite nanocolumns. Multi-quantum-well, core-shell nanocolumn heterostructures can be grown on the sidewalls of the nanocolumns. Furthermore, a continuous semiconductor epitaxial layer can be formed through the overgrowth of the nanocolumns to facilitate fabrication of high-quality planar device structures or for light emitting structures.
Abstract:
A backflow liner in an epitaxial growth system is provided in order to control gas flow and protect the surface of substrates throughout an epitaxial growth cycle. The backflow liner provides critical protection during the warming time prior to substrate pre-treatment, while the growth environment reaches steady state condition between the pre-treatment and the growth process, during pauses between the layer depositions in case of multilayer structure growth, and during the cooling process. The direction of the gas flow through the backflow liner is counter to the deposition gas flows directed from the source end of the growth system. The backflow liner is therefore designed to shape the flow of gases to prevent formation of the vortex-type streams in the growth system that may negatively affect the growth process.
Abstract:
A method has been developed to overcome deficiencies in the prior art in the properties and fabrication of semi-polar group III-nitride templates, films, and materials. A novel variant of hydride vapor phase epitaxy has been developed that provides for controlled growth of nanometer-scale periodic structures. The growth method has been utilized to grow multi-period stacks of alternating AlGaN layers of distinct compositions. The application of such periodic structures to semi-polar III-nitrides yielded superior structural and morphological properties of the material, including reduced threading dislocation density and surface roughness at the free surface of the as-grown material. Such enhancements enable to fabrication of superior quality semi-polar III-nitride electronic and optoelectronic devices, including but not limited to transistors, light emitting diodes, and laser diodes.