摘要:
A method is provided for electroplating a gate metal or other conducting or semiconducting material directly on a dielectric such as a gate dielectric. The method involves selecting a substrate, dielectric layer, and electrolyte solution or melt, wherein the combination of the substrate, dielectric layer, and electrolyte solution or melt allow an electrochemical current to be passed from the substrate through the dielectric layer into the electrolyte solution or melt. Methods are also provided for electrochemical modification of dielectrics utilizing through-dielectric current flow.
摘要:
Disclosed is a method for making a metal gate for a FET, wherein the metal gate comprises at least some material deposited by electroplating as well as an FET device comprising a metal gate that is at least partially plated. Further disclosed is a method for making a metal gate for a FET wherein the metal gate comprises at least some plated material and the method comprises the steps of: selecting a substrate having a top surface and a recessed region; conformally depositing a thin conductive seed layer on the substrate; and electroplating a filler gate metal on the seed layer to fill and overfill the recessed region.
摘要:
Disclosed is a method for making a metal gate for a FET, wherein the metal gate comprises at least some material deposited by electroplating as well as an FET device comprising a metal gate that is at least partially plated. Further disclosed is a method for making a metal gate for a FET wherein the metal gate comprises at least some plated material and the method comprises the steps of: selecting a substrate having a top surface and a recessed region; conformally depositing a thin conductive seed layer on the substrate; and electroplating a filler gate metal on the seed layer to fill and overfill the recessed region.
摘要:
A semiconductor device such as a complementary metal oxide semiconductor (CMOS) comprising at least one FET that comprises a gate electrode comprising a metal carbide and method of fabrication are provided. The CMOS comprises dual work function metal gate electrodes whereby the dual work functions are provided by a metal and a carbide of a metal.
摘要:
A semiconductor device such as a complementary metal oxide semiconductor (CMOS) comprising at least one FET that comprises a gate electrode comprising a metal carbide and method of fabrication are provided. The CMOS comprises dual work function metal gate electrodes whereby the dual work functions are provided by a metal and a carbide of a metal.
摘要:
An ultrathin high-k gate dielectric made for use in a field-effect transistor is provided. The gate dialectric is made by depositing a high-k gate dielectric material on a substrate and forming an ultrathin high-k dielectric by performing a thinning process on the high-k gate dielectric material. The process used to thin the high-k dielectric material can include at least one of any number of processes including wet etching, dry etching (including gas cluster ion beam (GCIB) processing), and hybrid damage/wet etching.
摘要:
A method for making an ultrathin high-k gate dielectric for use in a field effect transistor is provided. The method involves depositing a high-k gate dielectric material on a substrate and forming an ultrathin high-k dielectric by performing a thinning process on the high-k gate dielectric material. The process used to thin the high-k dielectric material can include at least one of any number of processes including wet etching, dry etching (including gas cluster ion beam (GCIB) processing), and hybrid damage/wet etching. In addition to the above, the present invention relates to an ultrathin high-k gate dielectric made for use in a field-effect transistor made by the above method.
摘要:
A method for forming high capacitance crystalline dielectric layers with (111) texture is disclosed. In an exemplary embodiment, deposition of a plurality of nuclei is performed at a temperature in the range of about 430 to 460 degrees Celsius, followed by growth of a continuous BSTO dielectric layer at a temperature greater than 600 degrees Celsius. In an exemplary embodiment, a process is disclosed for growing a barium strontium titanium oxide film with high capacitance and thickness of about 30 nm or less.
摘要:
A method of forming an integrated ferroelectric/CMOS structure which effectively separates incompatible high temperature deposition and annealing processes is provided. The method of the present invention includes separately forming a CMOS structure and a ferroelectric delivery wafer. These separate structures are then brought into contact with each and the ferroelectric film of the delivery wafer is bonded to the upper conductive electrode layer of the CMOS structure by using a low temperature anneal step. A portion of the delivery wafer is then removed providing an integrated FE/CMOS structure wherein the ferroelectric capacitor is formed on top of the CMOS structure. The capacitor is in contact with the transistor of the CMOS structure through all the wiring levels of the CMOS structure.
摘要:
The present invention provides an improved amorphization/templated recrystallization (ATR) method for fabricating low-defect-density hybrid orientation substrates. ATR methods for hybrid orientation substrate fabrication generally start with a Si layer having a first orientation bonded to a second Si layer or substrate having a second orientation. Selected regions of the first Si layer are amorphized and then recrystallized into the orientation of the second Si layer by using the second Si layer as a template. In particular, this invention provides a melt-recrystallization ATR method, for use alone or in combination with non-melt-recrystallization ATR methods, in which selected Si regions bounded by dielectric-filled trenches are induced to undergo an orientation change by the steps of preamorphization, laser-induced melting, and corner-defect-free templated recrystallization from the melt.