Abstract:
The transmitter circuit according to one embodiment includes a pulse generating circuit generating a pulse signal based on edges of input data, a first output driver outputting, based on the pulse signal, a first output pulse signal according to one of the edges to a first end of an external insulating coupling element, a second output driver outputting, based on the pulse signal, a second output pulse signal according to other one of the edges to a second end of the insulating coupling element, and an output stop circuit stopping the first and second output pulse signals from being output for a prescribed period from when a power supply voltage is turned on.
Abstract:
The transmitter circuit according to one embodiment includes a pulse generating circuit generating a pulse signal based on edges of input data, a first output driver outputting, based on the pulse signal, a first output pulse signal according to one of the edges to a first end of an external insulating coupling element, a second output driver outputting, based on the pulse signal, a second output pulse signal according to other one of the edges to a second end of the insulating coupling element, and an output stop circuit stopping the first and second output pulse signals from being output for a prescribed period from when a power supply voltage is turned on.
Abstract:
A semiconductor device includes a plurality of H-bridge circuits and a logic circuit which is commonly used for the plurality of H-bridge circuits. The logic circuit controls driving of each of the plurality of H-bridge circuits on the basis of signals which are input thereinto in such a manner that a combination of respective driving states of the plurality of H-bridge circuits meets a predetermined condition.
Abstract:
A semiconductor device includes a first semiconductor chip that includes a first main surface, a first inductor formed on the first main surface, and a first external connection terminal formed on the first main surface; a second semiconductor chip that includes a second main surface, a second inductor formed on the second main surface, a second external connection terminal formed on the second main surface; and a first insulating film that is located between the first semiconductor chip and the second semiconductor chip, wherein the first semiconductor chip and the second semiconductor chip overlap each other such that the first main surface and the second main face each other, the semiconductor device includes a facing region in which the first semiconductor chip and the second semiconductor chip overlap each other when seen in a plan view.
Abstract:
A semiconductor device includes a first semiconductor chip including a first plurality of wiring layers, and a first coil, a first bonding pad, and first dummy wires formed in an uppermost layer of the first plurality of the wiring layers, and a second semiconductor chip including a second plurality of wiring layers, a second coil, a second bonding pad, and second dummy wires formed in an uppermost layer of the second plurality of the wiring layers. The first semiconductor chip and the second semiconductor chip face each other via an insulation sheet. The first coil and the second coil are magnetically coupled with each other.
Abstract:
Dielectric breakdown is prevented between opposing two semiconductor chips, to improve the reliability of a semiconductor device. A first semiconductor chip has a wiring structure including a plurality of wiring layers, a first coil formed in the wiring structure, and an insulation film formed over the wiring structure. A second semiconductor chip has a wiring structure including a plurality of wiring layers, a second coil formed over the wiring structure, and an insulation film formed over the wiring structure. The first semiconductor chip and the second semiconductor chip are stacked via an insulation sheet with the insulation film of the first semiconductor chip and the insulation film of the second semiconductor chip facing each other. The first coil and the second coil are magnetically coupled with each other. Then, in each of the first and second semiconductor chips, wires and dummy wires are formed at the uppermost-layer wiring layer.