Abstract:
A semiconductor device of the present invention includes, in a region 1C, a top electrode made by a semiconductor layer of an SOI substrate, a capacitive insulating film made by an insulating layer, a bottom electrode made by a supporting board, and a lead part (a high-concentration impurity region of an n type) of the bottom electrode coupled to the supporting board. An SOI transistor in a region 1B is formed over a main surface of the semiconductor layer over the insulating layer as a thin film, and threshold voltage can be adjusted by applying a voltage to a well arranged on the rear face side of the insulating layer.
Abstract:
A semiconductor device and a communication circuit capable of reducing the effect of a noise generated in an inductor are provided. A semiconductor device according to an embodiment includes a substrate, a first circuit disposed in a first area of the substrate, a second circuit disposed in a second area of the substrate, the second circuit being configured to operate selectively with the first circuit, a first inductor disposed in the second area and connected to the first circuit, and a second inductor disposed in the first area and connected to the second circuit.
Abstract:
A sensor device includes a power line and a semiconductor device. The semiconductor device includes an inductor. The inductor is formed using an interconnect layer (to be described later using FIG. 3). The power line and the semiconductor device overlap each other when viewed from a direction perpendicular to the semiconductor device. The semiconductor device includes two inductors. The power line extends between the two inductors when viewed from a direction perpendicular to the semiconductor device.
Abstract:
An improvement is achieved in the reliability of a semiconductor device by preventing a dielectric breakdown between two semiconductor chips facing each other. During the manufacturing of first and second semiconductor chips, the process of planarizing the upper surfaces of insulating films is performed. Then, the first and second semiconductor chips are stacked via an insulating sheet with the respective insulating films of the first and second semiconductor chips facing each other such that the respective coils of the first and second semiconductor chips are magnetically coupled to each other.
Abstract:
This invention provides a sensor device at reduced cost. The sensor device includes a printed circuit board, a first terminal, a second terminal, an interconnect line, and a semiconductor device. The first terminal and second terminal are provided on the printed circuit board and coupled to a power line. The second terminal is coupled to a downstream part of the power line with respect to the first terminal. The interconnect line is disposed on the printed circuit board to couple the first terminal and second terminal to each other. In other words, the interconnect line is coupled to the power line in parallel. The semiconductor device is mounted on the printed circuit board and includes an interconnect layer and an inductor formed in the interconnect layer.
Abstract:
A semiconductor device has a chip mounting part, a first semiconductor chip, and a second semiconductor chip. The first semiconductor chip is mounted over the chip mounting part in a direction in which its first principal plane faces the chip mounting part. A part of the second semiconductor chip is mounted over the chip mounting part in a direction in which its third principal plane faces the first semiconductor chip. The element mounting part has a notch part. A part of the second semiconductor chip overlaps the notch part. In a region of the third principal plane of the second semiconductor chip that overlaps the notch part, a second electrode pad is provided.
Abstract:
To suppress the noise caused by an inductor leaks to the outside, and also to be configured such that magnetic field intensity change reaches the inductor.An inductor surrounds an internal circuit in a planar view and also is coupled electrically to the internal circuit. The upper side of the inductor is covered by an upper shield part and the lower side of the inductor is covered by a lower shield part. The upper shield part is formed by the use of a multilayered wiring layer. The upper shield part has plural first openings. The first opening overlaps the inductor in the planar view.
Abstract:
A semiconductor device includes a semiconductor substrate, a wiring layer provided over the semiconductor substrate, a high frequency wiring provided in the wiring layer, and plural dummy metals provided in the wiring layer apart from the high frequency wiring. In a plan view, the wiring layer includes a high frequency wiring vicinity region and an external region surrounding the high frequency wiring vicinity region. The high frequency wiring vicinity region includes a first region enclosed by an outer edge of the high frequency wiring, and a second region surrounding the first region. The plural dummy metals are disposed dispersedly in the high frequency wiring vicinity region and in the external region respectively. An average interval between the dummy metals in the high frequency wiring vicinity region is wider than that in the external region.
Abstract:
A semiconductor device includes: a first substrate; a multilayer wiring layer formed on the first substrate; a first inductor formed into a meander shape on the multilayer wiring layer in a plan view; and a second inductor formed into a meander shape on the multilayer wiring layer in a plain view, and arranged so as to be close to the first inductor in a plan view and not to overlap with the first inductor. A transformer is configured by the first inductor and the second inductor and, in a plan view, the first inductor and the second inductor extend along a first direction in which one side of the first substrate extends.
Abstract:
Dielectric breakdown is prevented between opposing two semiconductor chips, to improve the reliability of a semiconductor device. A first semiconductor chip has a wiring structure including a plurality of wiring layers, a first coil formed in the wiring structure, and an insulation film formed over the wiring structure. A second semiconductor chip has a wiring structure including a plurality of wiring layers, a second coil formed over the wiring structure, and an insulation film formed over the wiring structure. The first semiconductor chip and the second semiconductor chip are stacked via an insulation sheet with the insulation film of the first semiconductor chip and the insulation film of the second semiconductor chip facing each other. The first coil and the second coil are magnetically coupled with each other. Then, in each of the first and second semiconductor chips, wires and dummy wires are formed at the uppermost-layer wiring layer.