摘要:
This pattern inspection apparatus includes an inspection region information storage unit that stores an inspection region specified in a pattern region, a pattern surface height detection unit that detects a pattern surface height signal corresponding to a pattern surface height measurement position on the inspection sample, an autofocus mechanism that focuses on the inspection sample using the pattern surface height signal detected by the pattern surface height detection unit, a determination unit, and an autofocus mechanism control unit. When the determination unit determines that the pattern surface height measurement position is located within the inspection region, the autofocus mechanism control unit drives the autofocus mechanism, and the determination unit determines that the pattern surface height measurement position is not located within the inspection region, the autofocus mechanism control unit stops the autofocus mechanism.
摘要:
A reticle defect inspection apparatus that controls damage of a reticle by irradiation with an inspection light when the reticle is caused to be at rest is provided. The reticle defect inspection apparatus is a reticle defect inspection apparatus for inspecting for defects on a reticle using a pattern image obtained by irradiating the reticle on which a pattern is formed with light. The reticle defect inspection apparatus has a dose monitoring part for measuring a dose of the light to the reticle, a comparing part for comparing, after calculating accumulated irradiation from the dose measured by the dose monitoring part, the accumulated irradiation with a preset threshold, and a stop mechanism for stopping irradiation of the reticle with the light when, as a result of the comparison, the accumulated irradiation exceeds the threshold.
摘要:
A reticle defect inspection apparatus that controls damage of a reticle by irradiation with an inspection light when the reticle is caused to be at rest is provided. The reticle defect inspection apparatus is a reticle defect inspection apparatus for inspecting for defects on a reticle using a pattern image obtained by irradiating the reticle on which a pattern is formed with light. The reticle defect inspection apparatus has a dose monitoring part for measuring a dose of the light to the reticle, a comparing part for comparing, after calculating accumulated irradiation from the dose measured by the dose monitoring part, the accumulated irradiation with a preset threshold, and a stop mechanism for stopping irradiation of the reticle with the light when, as a result of the comparison, the accumulated irradiation exceeds the threshold.
摘要:
A reticle defect inspection apparatus that suppresses deterioration of optical components resulting from luminescent spots generated by an integrator and can sustain a defect inspection with high precision for a long time is provided. The reticle defect inspection apparatus is a reticle defect inspection apparatus for inspecting for defects on a reticle using a pattern image obtained by irradiating the reticle on which a pattern is formed with light. And the apparatus includes an illuminating optical system for irradiating the reticle with an inspection light and a detecting optical system for detecting a pattern image of the reticle irradiated with the inspection light, wherein the illuminating optical system comprises an integrator for equalizing illumination distribution of the inspection light and a moving mechanism for enabling the integrator to slightly move in a direction perpendicular to an optical axis of the integrator.
摘要:
A monolithic semiconductor laser array includes an insulating substrate, a plurality of semiconductor layers epitaxially grown on the substrate and forming a laser structure, and at least one groove transverse to the substrate extending through the semiconductor layers into the substrate, dividing the semiconductor laser structure into at least two mutually isolated parts. Within each of the isolated parts of the semiconductor laser structure, a first groove includes a side wall transverse to the substrate and forming a first resonator facet of a semiconductor laser. A second groove in each of the parts includes a second side wall transverse to the substrate and opposite the first side wall, forming a second resonator facet of the semiconductor laser in that part. Each second groove also includes a third side wall oblique to the substrate and opposite the second side wall for reflecting light from the respective semiconductor laser so that light from each of the semiconductor lasers is emitted along a common axis transverse to the substrate. The second grooves are arranged radially about a common point on the substrate. The semiconductor lasers may be electrically connected in series to each other.
摘要:
A registration system for registering a target registration object with respect to a predetermined reference position by using a registration mark formed on the target registration object includes the intensity measurement step of receiving a mark image for a predetermined period of time by a storage type sensor while an area of the target registration object which includes the mark is illuminated, the storage type sensor having elements whose positional relationship is known with respect to the mark image, the process of obtaining a center position of the mark image on the storage type sensor in a positioning direction in accordance with outputs from the elements of the storage type sensor obtained in the intensity measurement step, the distance calculation step of calculating a distance between the reference position and the center position obtained by the process, and the moving step of moving the target registration object by a distance corresponding to the distance obtained in the distance calculation step.
摘要:
A first diffraction grating is formed on a mask, and a second diffraction grating is formed on a wafer. Two light beams having slightly different frequencies interfere with each other and are diffracted as they travel through the first diffraction grating, are reflected by the second diffraction grating, and again pass through the first diffraction grating. As a result, they change into thrice diffracted light beams. The diffracted light beams are combined into a detection light beam which has a phase shift .phi..sub.A representing the displacement between the wafer and the mask, or a phase shift .phi..sub.G representing the gap between the wafer and the mask. The detection light beam is converted into a detection signal. The phase difference between the detection signal and a reference signal having no phase shifts are calculated, thus determining phase shift .phi..sub.A or .phi..sub.G. The displacement or the gap is determined from the phase shift. In accordance with the displacement or the gap, the wafer and the mask are aligned to each other, or the gap between them is adjusted to a desired value. Since the detection signal is generated from diffracted light beams, its S/N ratio is sufficiently great. Therefore, the displacement or the gap is determined with high precision. In addition, it is possible with the invention to perform the aligning of the wafer and the mask and the adjusting of the gap therebetween, simultaneously. Further, the incident light may be either circularly polarized light or non-polarized light.
摘要:
A pattern forming apparatus includes a drawing chamber having a drawing substrate on which an original pattern is drawn, a first temperature control unit having a first temperature regulator to make the temperature of the drawing chamber constant, and a constant-temperature member arranged near the drawing substrate. The pattern forming apparatus further includes a second temperature control unit having a second temperature regulator. The second temperature control unit is configured to control the set temperature of the constant-temperature member independently such that the temperature of the drawing substrate becomes substantially constant when the original pattern is drawn.
摘要:
A pattern forming apparatus comprising a sample base for positioning a sample on the base and moving a drawing position of the sample, a position measuring unit for measuring a position of the sample base, a correcting unit for mutually independently correcting drawing positions at those respective areas into which a whole drawing section of the sample is divided, the drawing position being calculated by the position measuring unit at the respective area, and a drawing unit for drawing a pattern on the sample on the basis of the position of the sample base measured by the position measuring unit and drawing position of the respective area corrected by the correcting unit.
摘要:
A semiconductor light emitting device includes a semiconductor light emitting element mounted on a package stem via a radiating heatsink block, the light emitting point of the light emitting element being positioned on the central axis of the stem and at or near the center of mass of the heatsink block. Another light emitting device includes a light emitting element mounted on a stem via a heatsink block, the light emitting point of the element being positioned on the central axis of the stem with only a portion of a lower surface of the heatsink block close to the central axis of the stem attached to the stem. The movement of the light emitting point with temperature variations is suppressed. Another light emitting device includes a laser chip element mounted on a package stem via a heatsink block, the laser chip element being mounted on the heatsink block so that the emitted light forms an angle .theta. with a surface of the stem and the position and angle of the emitted light do not vary when the temperature changes.