摘要:
A method for producing a SiC epitaxial wafer according to the present embodiment includes: an epitaxial growth step of growing the epitaxial layer on the SiC single crystal substrate by feeding an Si-based raw material gas, a C-based raw material gas, and a gas including a Cl element to a surface of a SiC single crystal substrate, in which the epitaxial growth step is performed under growth conditions that a film deposition pressure is 30 torr or less, a Cl/Si ratio is in a range of 8 to 12, a C/Si ratio is in a range of 0.8 to 1.2, and a growth rate is 50 μm/h or more from an initial growth stage.
摘要:
A method for manufacturing a SiC epitaxial wafer according to one aspect of the present invention includes separately introducing, into a reaction space for SiC epitaxial growth, a basic N-based gas composed of molecules containing an N atom within the molecular structure but having neither a double bond nor a triple bond between nitrogen atoms, and a Cl-based gas composed of molecules containing a Cl atom within the molecular structure, and mixing the N-based gas and the Cl-based gas at a temperature equal to or higher than the boiling point or sublimation temperature of a solid product generated by mixing the N-based gas and the Cl-based gas.
摘要:
A manufacturing method of a silicon carbide single crystal includes growing the silicon carbide single crystal on a surface of a seed crystal by supplying a supply gas including a raw material gas of silicon carbide to the surface of the seed crystal and controlling an environment so that at least a part inside the heating vessel is 2500° C. or higher. The growing the silicon carbide single crystal includes controlling a temperature distribution ΔT in a radial direction centering on central axis of the seed crystal and the silicon carbide single crystal satisfies a radial direction temperature condition of ΔT≤10° ° C. on the surface of the seed crystal before the growing of the silicon carbide single crystal and on a growth surface of the silicon carbide single crystal during the growing of the silicon carbide single crystal.
摘要:
A film-forming apparatus 100 supplies a plurality of gases toward a substrate 101 in a chamber 103 using a shower plate 124. The shower plate 124 has a plurality of gas flow paths 121 extending within the shower plate along a first face of the substrate 101 side and connected to gas pipes 131 supplying a plurality of gases, and a plurality of gas jetting holes 129 bored such that the plurality of gas flow paths 121 and the chamber 103 communicate with each other on the first face side. In the film-forming apparatus 100, the plurality of gases supplied from the gas pipes 131 to the plurality of gas flow paths 121 of the shower plate 124 are supplied from the gas jetting holes 129 to the substrate 101 without being mixed inside of and vicinity of the shower plate 124.
摘要:
Provided are a method for manufacturing a silicon carbide single crystal, and a silicon carbide single crystal ingot which ensure a high crystal growth rate and increase the ratio of conversion from basal plane dislocations to threading edge dislocations. The method prepares a seed substrate composed of silicon carbide having an off-angle in a [1-100] direction with respect to a {0001} plane; and grows a silicon carbide single crystal layer on the seed substrate by an HTCVD method, thereby converting basal plane dislocations contained in the seed substrate to threading edge dislocations during crystal growth.
摘要:
Provided are a method for manufacturing a silicon carbide single crystal, which can suppress conversion of threading edge dislocations into prismatic plane dislocations and conversion of the prismatic plane dislocations into basal plane dislocations; and a silicon carbide single crystal ingot and a silicon carbide wafer, in which conversion from threading edge dislocations into prismatic plane dislocations and conversion from the prismatic plane dislocations into basal plane dislocations have been suppressed. A silicon carbide single crystal is grown on the surface of a seed substrate by a gas method so that a temperature gradient in the radial direction of the seed substrate takes a predetermined value or lower during the growth. The area of regions T1 to T4, where regions R1 to R3 of a basal plane whose shear stresses exceed critical resolved shear stress, and regions S1 to S4 of a prismatic plane whose shear stresses exceed critical resolved shear stress overlap, is less than a half of the area of a crystal growth surface. Furthermore, the area of the regions T1 to T4 is smaller than the area of regions V1 to V4 where a region R4 of the basal plane whose shear stress does not exceed the critical resolved shear stress overlaps the regions S1 to S4.
摘要:
A method and an apparatus for manufacturing a silicon carbide single crystal, and a silicon carbide single crystal ingot, obtaining a silicon carbide single crystal reduced in defects such as threading dislocations, are provided. The method manufactures a silicon carbide single crystal by supplying a raw material gas into a reaction vessel with a seed substrate, and heats the interior to grow a silicon carbide single crystal on the surface of the seed substrate. The method includes growing the silicon carbide single crystal on the seed substrate surface, while controlling the temperature, to perform pair annihilation of threading dislocations or synthesis of the threading dislocations; and a second step of maintaining the temperature inside the reaction vessel in the state of the first predetermined temperature after execution of the first step, to bring the leading ends of the threading dislocations close to the surface of the seed substrate.
摘要:
A silicon carbide single crystal contains a heavy metal element having a specific gravity higher than a specific gravity of iron. An addition density of the heavy metal element at least in an outer peripheral portion of the silicon carbide single crystal is set to 1×1015 cm−3 or more.
摘要:
In a silicon carbide semiconductor film forming apparatus, first to third gasses are introduced into first to third separation chambers through first to third inlets, respectively. The first and second gasses are silicon raw material including gas and carbon raw material including gas, and the third gas does not include silicon and carbon. The first and second gasses are independently supplied to growth space through first and second supply paths extending from the first and second separation chambers, respectively. The third gas is introduced through a third supply path from the third separation chamber between the first and second gasses.
摘要:
When growing a hexagonal single crystal, an off angle is set, in a first direction [11-20] with respect to a basal plane {0001} serving as a main crystal growth plane, in a hexagonal single crystal for use as a foundation in performing crystal growth; and a cross-sectional shape which is decreased in crystal thickness in a stair-step manner from a reference line AA′ parallel to the first direction [11-20] toward second directions [−1100], [1-100] on both sides of the reference line and orthogonal to the first direction [11-20]. Dislocations threading in a c-axis direction, contained in the hexagonal single crystal, are converted into defects inclined ≧40° from the c-axis direction toward the basal plane during crystal growth, and the direction of propagation of the defects is controlled to a direction between a direction [−1-120] opposite to the first direction [11-20] and the second directions [−1100], [1-100], to discharge defects.