Abstract:
There is provided a semiconductor light emitting device including a first conductivity-type semiconductor base layer and a plurality of light emitting nanostructures disposed to be spaced apart from one another on the first conductivity-type semiconductor base layer, each light emitting nanostructure including a first conductivity-type semiconductor core, an active layer, an electric charge blocking layer, and a second conductivity-type semiconductor layer, respectively, wherein the first conductivity-type semiconductor core has different first and second crystal planes in crystallographic directions.
Abstract:
A light emitting device package includes a light emitting structure including a first light emitting cell, a second light emitting cell, and a third light emitting cell, each of the first to third light emitting cells including an active layer to emit light of a first wavelength in a first direction and being separated from each other in a second direction, orthogonal to the first direction, a first light adjusting portion including a first wavelength conversion layer in a first recess portion of the first light emitting cell, the first wavelength conversion layer to convert light of the first wavelength to light of a second wavelength, and a second light adjusting portion including a second wavelength conversion layer in a second recess portion of the second light emitting cell, the second wavelength conversion layer to convert light of the first wavelength to light of a third wavelength.
Abstract:
A semiconductor light emitting device includes a substrate, a buffer layer disposed on the substrate, the buffer layer comprising aluminum nitride, a composition grading layer disposed on the buffer layer, the composition grading layer comprising first aluminum nitride and second aluminum nitride, a capping layer disposed on the composition grading layer, and a cladding layer disposed on the capping layer. A composition of the first aluminum nitride and a composition of the second aluminum nitride change gradually in an alternating manner.
Abstract:
A chip mounting method includes providing a first substrate including a light transmissive substrate having first and second surfaces, a sacrificial layer provided on the first surface, and a plurality of chips bonded to the sacrificial layer, obtaining first mapping data by testing the chips, the first mapping data defining coordinates of normal chips and defective chips among the chips, disposing a second substrate below the first surface, disposing the normal chips on the second substrate by radiating a first laser beam to positions of the sacrificial layer corresponding to the coordinates of the normal chips, based on the first mapping data, to remove portions of the sacrificial layer thereby separating the normal chips from the light transmissive substrate, and mounting the normal chips on the second substrate by radiating a second laser beam to a solder layer of the second substrate.
Abstract:
There is provided a semiconductor light-emitting device including a base layer formed of a first conductivity-type semiconductor material, and a plurality of light-emitting nanostructures disposed on the base layer to be spaced apart from each other, and including first conductivity-type semiconductor cores, active layers, and second conductivity-type semiconductor layers. The first conductivity-type semiconductor cores include rod layers extending upwardly from the base layer, and capping layers disposed on the rod layers. Heights of the rod layers are different in at least a portion of the plurality of light-emitting nanostructures, and heights of the capping layers are different in at least a portion of the plurality of light-emitting nanostructures.
Abstract:
A nanostructure semiconductor light emitting device may include a first conductivity-type semiconductor base layer, a mask layer disposed on the base layer and having a plurality of openings exposing portions of the base layer, a plurality of light emitting nanostructures disposed in the plurality of openings, and a polycrystalline current suppressing layer disposed on the mask layer. At least a portion of the polycrystalline current suppressing layer is disposed below the second conductivity-type semiconductor layer. Each light emitting nanostructure includes a first conductivity-type semiconductor nanocore, an active layer, and a second conductivity-type semiconductor layer.
Abstract:
A semiconductor light emitting device includes a first light emitting portion including a first semiconductor stack, as well as a first lower dispersion Bragg reflector (DBR) layer and a first upper dispersion Bragg reflector (DBR) layer, disposed above and below the first semiconductor stack, a second light emitting portion including a second semiconductor stack, as well as a second lower dispersion Bragg reflector (DBR) layer and a second upper dispersion Bragg reflector (DBR) layer, disposed above and below the second semiconductor stack, a third light emitting portion including a third semiconductor stack, as well as a third lower dispersion Bragg reflector (DBR) layer and a third upper dispersion Bragg reflector (DBR) layer, disposed above and below the third semiconductor stack, a first bonding layer disposed between the first light emitting portion and the second light emitting portion, and a second bonding layer disposed between the second light emitting portion and the third light emitting portion.
Abstract:
A pixel of a light emitting diode module, display panel or other device, may comprise different colored sub-pixels, where one of the sub-pixels comprises a wavelength converting material, such as phosphor, to convert light emitted from an associated light emitting diode of that sub-pixel into a color other than the main color of light emitted from that sub-pixel. The wavelength converting material may have an amount selected to tune the color coordinates of the pixel. The amount of wavelength converting material may be determined in response to measuring the intensity of the spectrum of light emitted by the light emitting diode of the sub-pixel, or similarly manufactured sub-pixels, on which the wavelength converting material is to be formed. Methods of manufacturing the same are also disclosed.
Abstract:
A method of manufacturing a semiconductor light emitting device is provided. The method includes forming a first region of a lower semiconductor layer on a substrate, etching an upper surface of the first region using at least one gas used in forming the first region, in-situ in a chamber in which a process of forming the first region has been performed, forming a second region of the lower semiconductor layer on the first region, forming an active layer on the lower semiconductor layer, and forming an upper semiconductor layer on the active layer.
Abstract:
A light-emitting element package is provided. The light-emitting element package includes light-emitting structures spaced from each other, the light-emitting structures including first, second and third light-emitting structures, each of the light-emitting structures being configured to emit light of a first color; a first wavelength conversion layer provided on the first light-emitting structure at a first position corresponding to the first light-emitting structure, the first wavelength conversion layer being configured to convert light of the first color into light of a second color; a first oxide film provided on the first wavelength conversion layer; and a second wavelength conversion layer disposed in the first oxide film at a second position corresponding to the second light-emitting structure, the second wavelength conversion layer being configured to convert light of the first color into light of a third color. The first wavelength conversion layer and the second wavelength conversion layer have different structures.