Abstract:
A nonvolatile memory device includes a control logic circuit that receives a read command from outside the nonvolatile memory device, a memory cell array which includes a plurality of memory cells connected to a plurality of word lines, an address generator that generates a plurality of addresses based on read information from the outside of the nonvolatile memory device, an address decoder sequentially selects a plurality of pages in at least one word line, which correspond to the plurality of addresses, a page buffer circuit that is connected to the memory cell array through a plurality of bit lines, and prepares a plurality of sequential data from memory cells connected to the selected pages by the address decoder, and an input/output circuit that continuously outputs the plurality of sequential data from the page buffer circuit to the outside of the nonvolatile memory device through data lines.
Abstract:
A method of forming a metal bonding layer includes forming first and second bonding metal layers on one surfaces of first and second bonding objects, respectively. The second bonding object is disposed on the first bonding object such that the first bonding metal layer and the second bonding metal layer face each other. A eutectic metal bonding layer is formed through a reaction between the first and second bonding metal layers. At least one of the first bonding metal layer and the second bonding metal layer includes an oxidation prevention layer formed on an upper surface thereof. The oxidation prevention layer is formed of a metal having an oxidation reactivity lower than an oxidation reactivity of the bonding metal layer on the upper surface which the oxidation prevention layer is disposed.
Abstract:
A method for manufacturing a semiconductor light emitting device, includes: forming a light emitting structure having a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer on a growth substrate. A trench is formed in a portion to divide the light emitting structure into individual light emitting structures. The trench has a depth such that the growth substrate is not exposed. A support substrate is provided on the light emitting structure. The growth substrate is separated from the light emitting structure. The light emitting structure is cut into individual semiconductor light emitting devices.
Abstract:
A method of manufacturing a semiconductor light emitting device includes forming a plurality of semiconductor light emitting devices on a substrate, the semiconductor light emitting devices having at least one electrode pad formed on upper surfaces thereof; forming a conductive bump by forming a bump core on the electrode pad of each of the semiconductor light emitting devices and forming a reflective bump layer enclosing the bump core; forming a resin encapsulating part containing a phosphor on the plurality of semiconductor light emitting devices to encompass the conductive bump; polishing the resin encapsulating part to expose the bump core of the conductive bump to an upper surface of the resin encapsulating part; and forming individual semiconductor light emitting devices by cutting the resin encapsulating part between the semiconductor light emitting devices.
Abstract:
A method for manufacturing a semiconductor light emitting device, includes: forming a light emitting structure having a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer on a growth substrate. A trench is formed in a portion to divide the light emitting structure into individual light emitting structures. The trench has a depth such that the growth substrate is not exposed. A support substrate is provided on the light emitting structure. The growth substrate is separated from the light emitting structure. The light emitting structure is cut into individual semiconductor light emitting devices.
Abstract:
A semiconductor light emitting device includes a light emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer, sequentially stacked on a substrate along a first direction, and including an exposed region exposing the first conductivity-type semiconductor layer. A first contact electrode is in the exposed region, a second contact electrode is on the second conductivity-type semiconductor layer, and an insulating layer covers the light emitting structure. Separate electrode pads penetrate the insulating layer to be electrically connected to the first contact electrode and the second contact electrode. A side surface of at least one of the first and second electrode pads may extend to be coplanar with a side surface of the substrate along the first direction.
Abstract:
A semiconductor light emitting device includes a semiconductor stack including a first conductive semiconductor layer including a first surface, a second conductive semiconductor layer including a second surface opposite to the first surface, an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer, and a through hole disposed through the semiconductor stack. The semiconductor light emitting device further includes a contact layer connected to the first conductive semiconductor layer, disposed in the through hole, and disposed through the semiconductor stack, a first electrode layer connected to the contact layer, and a second electrode layer disposed on the second surface, and including a pad forming portion on which the semiconductor stack is not disposed. The semiconductor light emitting device further includes an insulating layer disposed between the first electrode layer and the second electrode layer, and an electrode pad disposed on the pad forming portion.
Abstract:
A method for manufacturing a semiconductor light emitting device includes forming an isolation pattern on a semiconductor single crystal growth substrate. A first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer are sequentially grown in one chip unit region of the semiconductor single crystal growth substrate defined by the isolation pattern, and a reflective metal layer is formed to cover the light emitting structure and the isolation pattern. A support substrate is formed on the reflective metal layer, and the semiconductor single crystal growth substrate is removed from the light emitting structure. The support substrate is then cut into individual light emitting devices.