摘要:
A lamp in which a stable, long-term luminous operation can be accomplished is achieved by the fact that, in a mercury lamp of the short arc type in which a cathode and an anode located next to one another within an arc tube and in which both ends of the arc tube are provided with hermetically sealed portions, the cathode is installed on the tip of a rod-shaped component which extends from a respective one of the hermetically sealed portions, the cathode having a greater outer diameter than the rod-shaped component on which it is installed, and the rear end of the cathode tapering toward the respective hermetically sealed portion.
摘要:
A semiconductor exposure device having excellent throughput using a mercury lamp as an exposure light source. The mercury lamp is capable of providing an efficient i-ray output, with a small i-ray half width value, allowing correction of chromatic aberration. The semiconductor exposure device is further provided with an illumination optical system for illuminating a target surface and a projection optical system for projecting the image on the target surface. The illumination optical system is provided with the mercury lamp, an optical integrator, an optical system for guiding a flux of light emitted from the mercury lamp to the optical integrator and a condenser lens for converging the light from the optical integrator. The semiconductor exposure device is provided with a power source and an associated control circuit for supplying an electric current to the mercury lamp. The power source is configured to allow the mercury lamp to have an average electric field E satisfying the following relational expression with respect to the lamp input power W.sub.L (W), provided that the value obtained by deducting 11 V from the lamp voltage V.sub.L (V) of the mercury lamp and dividing the difference by the electrode-to-electrode distance d (mm) is the average electric field E (=V.sub.L -11/d) (V/mm): E.sub.p (W.sub.L)-1.0 V/mm.ltoreq.E.ltoreq.E.sub.p (W.sub.L)+1.5 V/mm, wherein E.sub.p (W.sub.L)=a+bW.sub.L ; E.ltoreq.6 V/mm; a and b are constants (a=1.4 V/mm, b=0.71.times.10.sup.-3 V/mm.multidot.W).
摘要翻译:一种半导体曝光装置,其使用汞灯作为曝光光源具有优异的生产能力。 汞灯能够提供高效的i射线输出,具有小的i射线半值值,允许校正色差。 半导体曝光装置还设置有用于照射目标表面的照明光学系统和用于将图像投影在目标表面上的投影光学系统。 照明光学系统设置有水银灯,光学积分器,用于将从汞灯发射的光束的光束引导到光学积分器的光学系统和用于会聚来自光学积分器的光的聚光透镜。 半导体曝光装置设置有用于向汞灯供应电流的电源和相关联的控制电路。 电源被配置为允许汞灯具有相对于灯输入功率WL(W)满足以下关系式的平均电场E,条件是通过从灯电压VL(V)中减去11V获得的值 )的平均电场E(= VL-11 / d)(V / mm):Ep(WL)-1.0V / mm (WL)+1.5V / mm,其中Ep(WL)= a + bWL; E = 6 V / mm; a和b是常数(a = 1.4V / mm,b = 0.71×10-3V / mm×W)。
摘要:
A mercury lamp of the short arc type in which tantalum can absorb impurity gases to a sufficient degree even if the inside of the arc tube reaches a high temperature is achieved by providing an arc tube, within which mercury and an inert gas are encapsulated, with a pair of electrodes disposed opposite each other within the arc tube, each of the electrodes being supported by a respective terminal post, tantalum being provided on the terminal post of one of the electrodes, and by ensuring that both of the relationships (D2/D1)>1.3 and the relationship 0.2.ltoreq.(D2/D1).sup.2 /L.ltoreq.0.5 are satisfied at the same time, where D1 is an outer diameter of the terminal post in millimeters, D2 is an outer diameter of the electrode supported by the respective terminal post in millimeters, and L is a distance between a tip of the electrode on which the tantalum is provided and the tantalum on the terminal post of that electrode.
摘要:
A standard member for automatically, stably, and highly accurately performing magnification calibration used in an electron microscope, the standard member including, on the same plane, a multilayer film cross section formed by alternately laminating materials different from each other, a plurality of first mark patterns arranged across a first silicon layer and in parallel to the multilayer film cross section, at least a pair of second mark patterns arranged across a second silicon layer thicker than the first silicon layer on the opposite side of the first mark patterns with respect to the multilayer film cross section and in parallel to the multilayer film cross section, and a silicon layer arranged on the outer side of the first mark patterns and the second mark patterns with respect to the multilayer film cross section.
摘要:
In a method of manufacturing an electronic component built-in substrate of the present invention, a mounted body including a first insulating layer, a stopper metal layer formed under the first insulating layer of a portion corresponding to a component mounting region and a second insulating layer formed on a lower surface of the first insulating layer and covering the stopper metal layer is prepared, and a concave portion is obtained by penetration-processing a portion of the first insulating layer, which corresponds to the component mounting region to form an opening portion, while using the stopper metal layer as a stopper. Also, the stopper metal layer in the concave portion is removed, then an electronic component is mounted on the concave portion, and then a third insulating layer is formed on the electronic component.
摘要:
A material suitable for improving the secondary electron emission coefficient of PDPs is provided to thereby enable a PDP to operate at a higher efficiency. Provided is a PDP (200) which includes a protective layer (7) formed by MgO and electron-emitting particles constituted of a crystalline compound dispersed on the protective layer (7) to form an electron emission layer (20). The electron-emitting particles are a crystalline compound whose primary components are indium, oxygen, and one or more selected from the group consisting of calcium, strontium, barium, and rare earth metals.
摘要:
There are provided an upper electrode 18 and a lower electrode which are formed like flat plates, a dielectric layer interposed between the upper electrode and the lower electrode, and a covering portion which covers an external surface of at least one of the upper electrode and the lower electrode and is formed by an insulating resin. At least one of the upper electrode and the lower electrode is provided with at least one of opening holes having larger diameters than a via formed in a connection to a wiring pattern when a capacitor component is to be included in a substrate.
摘要:
The present invention provides a magnetic recording medium wherein a fine non-magnetic inorganic powder, the dispersibility of which is improved, is used to improve the surface smoothness of a lower non-magnetic layer, thereby giving an excellent surface smoothness of an upper magnetic layer and electromagnetic conversion property; and a production process thereof. A magnetic recording medium comprising at least a non-magnetic support, a lower non-magnetic layer on one surface of the non-magnetic support, and an upper magnetic layer on the lower non-magnetic layer, wherein the upper magnetic layer contains at least a ferromagnetic powder, and a binder resin material, and the lower non-magnetic layer contains at least carbon black, iron oxide, and a binder resin material, and the iron oxide has an average major axis length of 30 to 100 nm, and a specific surface area based on the BET method of 80 to 120 m2/g, and the iron oxide contains moisture in an amount per unit specific surface area of 0.13 to 0.25 mg/m2.
摘要:
This invention provides a method of producing a ceramic laminate body capable of suppressing the occurrence of de-lamination and cracks, and providing high reliability. This method comprises a heat-bonding step of covering a full periphery of side surfaces of ceramic layers 11 positioned in an orthogonal direction to a laminating direction with a side surface jig while the ceramic layers are laminated, heating the ceramic layers and pressing the ceramic layers from both end faces positioned in the laminating direction by end face jigs to form a heat-bonded ceramic laminate body; and a side surface grinding step of grinding or cutting the full periphery of the side surfaces inclusive of damage portions 9 occurring in the ceramic laminate body in the heat-bonding step.
摘要:
A green sheet including a binder containing an acrylic resin having no polar group and a ceramics material in powder is prepared, and connection via are formed in the green sheet. Further, a conductor layer having virtually no voids is placed on the green sheet and a mask is also placed on the conductor layer. Then, the conductor layer is patterned by wet-etching so that wiring is formed thereon. A plurality of the green sheets thus formed are laminated, and a binding sheet, which contains an inorganic composition that has virtually no sintering shrinkage at the firing temperature of the multi-layered body as a main component, is formed on either both surfaces or one surface of the laminated body, and this is then fired, and thereafter, the binding sheet is removed.