摘要:
Sub-micron dimensioned, ultra-shallow junction MOS and/or CMOS transistor devices having reduced or minimal junction leakage are formed by a salicide process wherein carbonaceous residue on silicon substrate surfaces resulting from reactive plasma etching for sidewall spacer formation is removed prior to salicide processing. Embodiments include removing carbonaceous residues by performing a hydrogen ion plasma treatment.
摘要:
Sub-micron dimensioned, ultra-shallow junction MOS and/or CMOS transistor devices having reduced or minimal junction leakage are formed by a salicide process wherein carbonaceous residue on silicon substrate surfaces resulting from reactive plasma etching for sidewall spacer formation is removed prior to salicide processing. Embodiments include removing carbonaceous residues by performing a hydrogen ion plasma treatment.
摘要:
In one embodiment, the present invention relates to a method of depositing a dielectric layer over a stacked interconnect structure, involving the steps of: providing a substrate having at least one stacked interconnect structure comprising at least one of an aluminum layer and an aluminum alloy layer; depositing the dielectric layer over the stacked interconnect structureunder a pressure from about 1 mTorr to about 6 mTorr, an O.sub.2 flow rate from about 110 sccm to about 130 sccm and a silane flow rate from about 52 sccm to about 60 sccm at a bias power from about 2500 W to about 3100 W,under a pressure from about 2 Torr to about 2.8 Torr, an N.sub.2 flow rate from about 7 l to about 11.5 l, an N.sub.2 O flow rate from about 1 l to about 2 l and a silane flow rate from about 250 sccm to about 300 sccm at a power from about 900 W to about 1300 W at a temperature from about 300.degree. C. to about 350.degree. C., orunder a pressure from about 2 Torr to about 2.8 Torr, an N.sub.2 flow rate from about 7 l to about 11.5 l, an N.sub.2 O flow rate from about 1 l to about 2 l and a silane flow rate from about 80 sccm to about 120 sccm at a power from about 900 W to about 1300 W at a temperature from about 390.degree. C. to about 410.degree. C.
摘要:
Stress corrosion induced voiding of patterned metal layers is avoided or substantially reduced by removing etching residues before gap filling. Embodiments include etching an Al or Al alloy layer employing fluorine and/or chlorine chemistry, wet cleaning, treating with a plasma containing ammonia or ammonia and oxygen at a temperature of at least about 400° C. and gap filling with a dielectric material, e.g. HDP oxide by HDP CVD.
摘要:
A process of forming an electronic device can include depositing a first layer over a substrate and depositing a second layer over the first layer. In one embodiment, depositing the first layer is performed at a first alternating current (“AC”) power, and depositing the second layer is performed at a second AC power that is different from the first AC power. In another embodiment, the first layer is formed by a physical vapor deposition technique at a first power sufficient to remove the insulating layer using first metal ions, wherein the first layer includes an overhanging portion extending over the bottom of the opening. In a further embodiment, the second layer is formed by the physical vapor deposition technique using second metal ions and a second power sufficient to reduce a lateral dimension of the overhanging portion.
摘要:
Stress corrosion induced voiding of patterned metal layers is avoided or substantially reduced by removing etching residues before gap filling. Embodiments include etching an Al or Al alloy layer employing fluorine and/or chlorine chemistry, wet cleaning, treating with a nitrogen-containing plasma at a temperature of at least about 400° C. and gap filling with a dielectric material, e.g. HDP oxide by HDPCVD.
摘要:
A method of fabricating an integrated circuit including a first region and a second region each having different poly-silicon gate structures is provided. The method includes depositing a first poly-silicon layer over the first and the second region and depositing, within the second region, an oxide layer over the first poly-silicon layer. A second poly-silicon layer is deposited over the first poly-silicon layer and the oxide region. A portion of the second poly-silicon layer that lies over the oxide region is then stripped away.
摘要:
A method of fabricating an integrated circuit including a first region and a second region each having different poly-silicon gate structures is provided. The method includes depositing a first poly-silicon layer over the first and the second region and depositing, within the second region, an oxide layer over the first poly-silicon layer. A second poly-silicon layer is deposited over the first poly-silicon layer and the oxide region. A portion of the second poly-silicon layer that lies over the oxide region is then stripped away.
摘要:
A method is provided for forming an interconnect in a semiconductor memory device. The method includes forming a pair of source select transistors on a substrate. A source region is formed in the substrate between the pair of source select transistors. A first inter-layer dielectric is formed between the pair of source select transistors. A mask layer is deposited over the pair of source select transistors and the inter-layer dielectric, where the mask layer defines a local interconnect area between the pair of source select transistors having a width less than a distance between the pair of source select transistors. The semiconductor memory device is etched to remove a portion of the first inter-layer dielectric in the local interconnect area, thereby exposing the source region. A metal contact is formed in the local interconnect area.
摘要:
A method of manufacturing an integrated circuit (IC) can utilizes semiconductor substrate configured in accordance with a trench process. The substrate utilizes trenches in a base layer to induce stress in a layer. The substrate can include silicon. The trenches define pillars on a back side of a bulk substrate or base layer of a semiconductor-on-insulator (SOI) wafer.