Abstract:
A film forming method of forming a carbon film includes: cleaning an interior of a processing container by using oxygen-containing plasma in a state in which no substrate is present inside the processing container; subsequently, extracting and removing oxygen inside the processing container by using plasma in the state in which no substrate is present inside the processing container; and subsequently, loading a substrate into the processing container and forming the carbon film on the substrate through plasma CVD using a processing gas including a carbon-containing gas, wherein the cleaning, the extracting and removing the oxygen, and the forming the carbon film are repeatedly performed.
Abstract:
There is provided a semiconductor device including a first conductive layer formed on a substrate; a second conductive layer serving as a wiring layer and a barrier layer provided between the first conductive layer and the second conductive layer, wherein the barrier layer is made of a graphene film, and the second conductive layer includes a metal silicide compound, the metal silicide compound being provided so as to be in contact with the graphene film constituting the barrier layer.
Abstract:
The present disclosure provides a technique capable of controlling a shape of an SAM. Provided is a method of forming a target film on a substrate, wherein the method includes preparing a substrate including a layer of a first conductive material formed on a surface of a first region, and a layer of an insulating material formed on a surface of a second region; forming carbon nanotubes on a surface of the layer of the first conductive material; and supplying a raw material gas for a self-assembled film to form the self-assembled film in a region of the surface of the layer of the first conductive material in which the carbon nanotubes have not been formed.
Abstract:
There is provided a film forming method of forming a carbon-containing film by a microwave plasma from a microwave source, the film forming method including: a dummy step of performing a dummy process by generating plasma of a first carbon-containing gas within a processing container; a placement step of placing a substrate on a stage within the processing container; and a film forming step of forming the carbon-containing film on the substrate using plasma of a second carbon-containing gas.
Abstract:
A method for forming carbon nanotubes includes preparing a target object having a surface on which one or more openings are formed, each of the openings having a catalyst metal layer on a bottom thereof; performing an oxygen plasma process on the catalyst metal layers; and activating the surfaces of the catalyst metal layers by performing a hydrogen plasma process on the metal catalyst layers subjected to the oxygen plasma process. The method further includes filling carbon nanotubes in the openings on the target object by providing an electrode member having a plurality of through holes above the target object in a processing chamber, and then growing the carbon nanotubes by plasma CVD on the activated catalyst metal layer by diffusing active species in a plasma generated above the electrode member toward the target object through the through holes while applying a DC voltage to the electrode member.
Abstract:
A method of pre-coating a carbon film by plasma in a processing container, includes: pre-coating an inner wall of the processing container with a first carbon film by plasma of a first carbon-containing gas under a first pressure; and processing the first carbon film with the plasma under a second pressure.
Abstract:
There is provided a processing apparatus for forming a film with a plasma. The processing apparatus comprises: a processing container, having a ceramic sprayed coating on an inner wall on which an antenna that radiates microwaves is arranged, configured to accommodate a substrate; a mounting table configured to mount the substrate in the processing container; and a controller configured to perform a precoating process of coating a surface of the ceramic sprayed coating with a first carbon film with a plasma of a first carbon-containing gas at a first pressure and a film forming process of forming a second carbon film on the substrate with a plasma of a second carbon-containing gas at a second pressure.
Abstract:
A method of forming a graphene structure, includes: providing a substrate; performing a preprocessing by supplying a first processing gas including a carbon-containing gas to the substrate while heating the substrate, without using plasma; and after the preprocessing, forming the graphene structure on a surface of the substrate through a plasma CVD using plasma of a second processing gas including a carbon-containing gas.
Abstract:
A method for forming a hexagonal boron nitride film comprises: providing a substrate; and generating plasma of a boron-containing gas and a nitrogen-containing gas in a plasma generation region located at a position apart from the substrate to form the hexagonal boron nitride film on the surface of the substrate by plasma CVD using plasma diffused from the plasma generation region.
Abstract:
A method for forming carbon nanotubes includes preparing a target object having a surface on which one or more openings are formed, each of the openings having a catalyst metal layer on a bottom thereof; performing an oxygen plasma process on the catalyst metal layers; and activating the surfaces of the catalyst metal layers by performing a hydrogen plasma process on the metal catalyst layers subjected to the oxygen plasma process. The method further includes filling carbon nanotubes in the openings on the target object by providing an electrode member having a plurality of through holes above the target object in a processing chamber, and then growing the carbon nanotubes by plasma CVD on the activated catalyst metal layer by diffusing active species in a plasma generated above the electrode member toward the target object through the through holes while applying a DC voltage to the electrode member.