摘要:
It is an object to provide a manufacturing process for a printed wiring board in which a copper foil and resin as a substrate material of a copper clad laminate are irradiated with carbon dioxide gas laser light to drill in both of them simultaneously. In forming a through hole or a hole such as IVH, BVH or the like in the copper clad laminate using carbon dioxide gas laser light, one of a nickel layer of 0.08 to 2 &mgr;m in thickness, a cobalt layer of 0.05 to 3 &mgr;m in thickness and a zinc layer of 0.03 to 2 &mgr;m in thickness is formed as an additional metal layer on a surface of the copper foil residing in an external layer of the copper clad laminate and thereafter, by performing laser drilling, the copper foil layer and the resin layer as a substrate material of the copper clad laminate are enabled to drill simultaneously.
摘要:
This invention provides a metal foil and an etching process which overcomes the problem of etching of the copper foil layer and the plating copper layer formed on a metal clad laminate during the conventional semi-additive process for producing printed wire boards. In the present invention, the metal foil and the metal foil with carrier foil include a nickel or tin layer 0.5 to 3 μm thick formed on the external surface of a metal clad laminate which protects the surface of the plated layer during the final flash etching of the copper foil layer.
摘要:
There are provided an electrodeposited copper foil with carrier that can be used for manufacturing a printed wiring board that excels in the finished accuracy of the resistor circuit in comparison with a conventional printed wiring board with resistor circuits, and a method for manufacturing such a printed wiring board with resistor circuits. The method for manufacturing a printed wiring board with resistor circuits comprises the steps of previously forming copper foil circuits using a copper foil for a printed wiring board with resistor circuits comprising a nickel layer for forming a resistor circuit between a copper carrier and a copper foil layer for forming the circuit, whose surface layer is subjected to a nodular treatment, using a copper etching solution that does not etch the nickel layer; fabricating a copper clad laminate using the copper foil after forming the copper circuits, and a prepreg composing a resin base material; removing the copper carrier to expose the nickel layer for forming the resistor circuit, and etching the resistor circuits to form the nickel resistor-circuits.
摘要:
The present invention is directed to provision of a surface-treated copper foil exhibiting a maximum effect of a silane coupling agent which is adsorbed onto the copper foil and is employed in order to enhance adhesion between the copper foil and a substrate during manufacture of printed wiring boards. The invention is also directed to provision of a method for producing such a copper foil. To attain these goals, a surface-treated copper foil for producing printed wiring boards is provided, wherein an anti-corrosion treatment comprises forming a zinc layer or a zinc alloy layer on a surface of the copper foil and forming an electrodeposited chromate layer on the zinc or zinc alloy layer; forming a silane-coupling-agent-adsorbed layer on the electrodeposited chromate layer without causing the electrodeposited chromate layer of the nodular-treated surface to dry; and drying.
摘要:
The present invention provides an electrodeposited copper foil which solves problems of electrodeposited-copper-clad laminates to which the foil has been incorporated, such as bow, twist, and poor dimensional stability, and a method of inspecting an electrodeposited copper foil so as to assure the quality of the foil. In the invention, there is employed an electrodeposited copper foil which recrystallizes by heating at low temperature during production of a copper-clad laminate employing an electrodeposited copper foil and which exhibits an elongation as high as 18% or more in an atmosphere of 180° C., wherein the maximum rate of decrease in maximum tensile strength falls within the aging time ranging from 5 to 10 minutes in a process in which tensile strength decreases as time elapses during aging in an atmosphere at 170° C., and the change in tensile strength in a knick portion shown in a {tensile strength} vs. {aging time} curve which is drawn in an x-y plane and which has a knick portion is 3 kg/mm2 or more, the x-axis representing aging time and the y-axis representing tensile strength.
摘要翻译:本发明提供一种电解铜箔,其解决了结合有箔的电沉积铜包覆层压板的问题,例如弯曲,扭曲和尺寸稳定性差,以及检查电沉积铜箔的方法,以确保 箔的质量。 在本发明中,使用电沉积铜箔,其在使用电沉积铜箔的覆铜层压板的制造中在低温下加热而再结晶,并且在180℃的气氛中表现出高达18%以上的伸长率 其中,最大拉伸强度的最大降低速率在拉伸强度在170℃的气氛中老化时的时间经过时拉伸强度降低的过程中在5〜10分钟的老化时间内,拉伸变化 在xy平面中绘制并且具有克点部分的{拉伸强度}对{老化时间}曲线所示的细纱部分的强度为3kg / mm 2或更大,x轴表示老化时间和y -axis表示拉伸强度。
摘要:
The present invention provides a filtration method of copper electrolyte that can remove minute electrolytic by-products and dirt and may improve filtration efficiency by improving a conventional filtration method, the so-called precoating method. In a filtration method of copper electrolyte for removing electrolytic by-products and dirt which affect copper electrolysis, by passing copper electrolyte through a filter element precoated with a filtering aid, in the present invention, a precoated layer of a filtering aid is formed on a filter element in advance. Activated carbon preliminary treatment solution containing powdery activated carbon is passed through the filter element formed with the precoated layer, and is also circulated until no powdery activated carbon leaks from an outlet of the filter element, thus forming a powdery activated carbon layer on the precoated layer. Subsequently, the copper electrolyte is passed through for filtration.
摘要:
The invention provides a surface-treated copper foil for producing printed wiring boards whose surface has,,been subjected to nodular treatment and anti-corrosion treatment, wherein the anti-corrosion treatment includes forming a-zinc-copper-tin ternary alloy anti-corrosive plating layer on a surface of the copper foil; forming an electrolytic chromate layer on the anti-corrosive plating layer; forming a silane-coupling-agent-adsorbed layer on the electrolytic chromate layer; and drying the copper foil for 2-6 seconds such that the copper foil reaches 105° C.-200° C.
摘要:
An object of the invention is to provide a surface-treated copper foil capable of consistently attaining a percent loss in peel strength against hydrochloric acid degradation of 10% or less as measured on a copper pattern prepared from the copper foil and having a line width of 0.2 mm, by bringing out the maximum effect of the silane coupling agent employed in zinc-plated or zinc-alloy-plated anti-corrosive copper foil. Another object is to impart excellent moisture resistance, heat resistance, and long-term storage stability to the surface-treated copper foil. In order to attain these objects, the invention provides a surface-treated copper foil for producing printed wiring boards which has been subjected to nodular treatment and anti-corrosion treatment of a surface of a copper foil, wherein the anti-corrosion treatment includes forming a zinc or zinc alloy plating layer on a surface of the copper foil; forming an electrolytic chromate layer on the zinc or zinc alloy plating layer; forming a chromic-ion-containing silane coupling agent-adsorbed layer on the electrolytic chromate layer; and drying the copper foil for 2-6 seconds such that the copper foil reaches 105° C.-200° C.
摘要:
The invention provides a surface-treated copper foil for producing printed wiring boards whose surface has been subjected to nodular treatment and anti-corrosion treatments, wherein the anti-corrosion treatment includes forming a zinc-copper-nickel ternary alloy anti-corrosive plating layer on a surface of the copper foil; forming an electrolytic chromate layer on the anti-corrosive plating layer; forming a silane-coupling-agent-absorbed layer on the electrolytic chromate layer; and drying the copper foil for 2-6 seconds such that the copper foil reaches 105° C.-200° C.
摘要:
An object of the invention is to provide a surface-treated copper foil capable of consistently attaining a percent loss of peel strength in resistance against hydrochloric acid degradation of 10% or less as measured on a copper pattern prepared from the copper foil and having a line width of 0.2 mm, by bringing out the maximum effect of the silane coupling agent employed in brass-plated anti-corrosive copper foil. The Another object is to impart excellent moisture resistance to the surface-treated copper foil. In order to attain these objects, the invention provides a surface-treated copper foil for producing printed wiring boards which has been subjected to nodular treatment and anti-corrosion treatment of a surface of a copper foil, wherein the anti-corrosion treatment includes forming a zinc-copper (brass) plating layer on a surface of the copper foil; forming an electrodeposited chromate layer on the zinc-copper (brass) plating layer; forming a silane-coupling-agent-adsorbed layer on the electrodeposited chromate layer; and drying the copper foil for 2-6 seconds such that the copper foil reaches 105° C.-200° C.