摘要:
An electron microscope which utilizes a polarized electron beam and can obtain a high contrast image of a sample is provided. The microscope includes: a laser; a polarization apparatus that polarizes a laser beam into a circularly polarized laser beam; a semiconductor photocathode that is provided with a strained superlattice semiconductor layer and generates a polarized electron beam when irradiated with the circularly polarized laser beam; a transmission electron microscope that utilizes the polarized electron beam; an electron beam intensity distribution recording apparatus arranged at a face reached by the polarized electron beam that has transmitted through the sample. An electron beam intensity distribution recording apparatus records an intensity distribution before and after the polarization of the electron beam is reversed, and a difference acquisition apparatus calculates a difference therebetween.
摘要:
The Present invention provides an organic EL display and a lighting device having high efficiency. The organic EL display comprises a substrate, a pixel-driving circuit unit, and pixels arranged in the form of a matrix on the substrate. The pixel comprises a light-emitting part, and the light-emitting part is composed of a first electrode placed near to the substrate, a second electrode placed far from the substrate, and at least one organic layer placed between the first and second electrodes. The second electrode has a metal electrode layer having a thickness of 10 nm to 200 nm, and the metal electrode layer comprises a metal part and plural openings penetrating through the layer. The metal part is seamless and formed of metal continuously connected without breaks between any points therein. The openings have an average opening diameter of 10 nm to 780 nm, and are arranged so periodically that the distribution of the arrangement is represented by a radial distribution function curve having a half-width of 5 nm to 300 nm.
摘要:
In an organic EL display provided with a transparent substrate, a buffer layer provided on the transparent substrate, and an organic EL element provided on the buffer layer, the buffer layer is formed of a material having the same refractive index as the transparent electrode of the EL element, and has a two-dimensional concavo-convex structure having two pattern periods.
摘要:
The resistor of the present invention comprises a substrate, a pair of upper electrode layers disposed on one surface of the substrate, and a resistor layer connected to the pair of upper electrode layers, wherein the upper electrode layer includes a first thin film layer that strongly adheres to the substrate and the resistor layer, and a second thin film layer having volume resistivity lower than the volume resistivity of the first upper electrode thin film layer. Further, the resistor of the present invention comprises a pair of side electrodes, electrically connected to the upper electrode layers, at the end portion of the substrate, and the side electrode includes a first side thin film layer and a second side thin film layer, and the material that forms the second side thin film layer has a solid solubility with the first side thin film layer.
摘要:
A process of producing a highly spin-polarized electron beam, including the steps of applying a light energy to a semiconductor device comprising a first compound semiconductor layer having a first lattice constant and a second compound semiconductor layer having a second lattice constant different from the first lattice constant, the second semiconductor layer being in junction contact with the first semiconductor layer to provide a strained semiconductor heterostructure, a magnitude of mismatch between the first and second lattice constants defining an energy splitting between a heavy hole band and a light hole band in the second semiconductor layer, such that the energy splitting is greater than a thermal noise energy in the second semiconductor layer in use; and extracting the highly spin-polarized electron beam from the second semiconductor layer upon receiving the light energy. A semiconductor device for emitting, upon receiving a light energy, a highly spin-polarized electron beam, including a first compound semiconductor layer formed of gallium arsenide phosphide, GaAs.sub.1-x P.sub.x, and having a first lattice constant; and a second compound semiconductor layer provided on the first semiconductor layer, the second semiconductor layer having a second lattice constant different from the first lattice constant and a thickness, t, smaller than the thickness of the first semiconductor layer.
摘要:
This invention relates to a rotary structure adapted to be used as a spindle unit for a miniature motor or miniature rotor or as a tape guide roller for a VTR. In the structure of the rotary mechanism, instead of a conventional expensive radial ball bearing, a substantially V-shaped groove is formed on a shaft itself so as to hold balls provided between this groove and the tapered surface or concave spherical ball receiving surface of an outer race provided around the groove.
摘要:
According to one embodiment, a semiconductor light emitting device includes first and second electrode layers, a and second semiconductor layers, a light emitting layer and a first intermediate layer. The first electrode layer has a metal portion having through-holes. The second electrode layer is stacked with the first electrode layer along a stacked direction, and light-reflective. The first semiconductor layer is provided between the first and second electrode layers, and has a first conductivity type. The second semiconductor layer is provided between the first semiconductor layer and the second electrode layer, and has a second conductivity type. The light emitting layer is provided between the first and second semiconductor layers. The first intermediate layer is provided between the second semiconductor layer and the second electrode layer, transmissive to light emitted from the light emitting layer, and includes first contact portions and a first non-contact portion.
摘要:
The present invention provides such a formation method that an antireflection structure having excellent antireflection functions can be formed in a large area and at small cost. Further, the present invention also provides an antireflection structure formed by that method. In the formation method, a base layer and particles placed thereon are subjected to an etching process. The particles on the base layer serve as an etching mask in the process, and hence they are more durable against etching than the base layer. The etching rate ratio of the base layer to the particles is more than 1 but not more than 5. The etching process is stopped before the particles disappear. It is also possible to produce an antireflection structure by nanoimprinting method employing a stamper. The stamper is formed by use of a master plate produced according to the above formation method.
摘要:
The present invention provides a semiconductor light-emitting element comprising an electrode part excellent in ohmic contact and capable of emitting light from the whole surface. An electrode layer placed on the light-extraction side comprises a metal part and plural openings. The metal part is so continuous that any pair of point-positions in the part is continuously connected without breaks, and the metal part in 95% or more of the whole area continues linearly without breaks by the openings in a straight distance of not more than ⅓ of the wavelength of light emitted from an active layer. The average opening diameter is of 10 nm to ⅓ of the wavelength of emitted light. The electrode layer has a thickness of 10 nm to 200 nm, and is in good ohmic contact with a semiconductor layer.