摘要:
An optical disk for use in converting light emitted from a light-emitting diode chip to white light. The optical disk includes a tapered surface such that a center area of the disk has a width greater than a width of an outer area of the disk. The optical disk is formed of a silicone having at least one weight percent mix of phosphor. Various embodiments of this generally described optical disk are also presented.
摘要:
An optical disk for use in converting light emitted from a light-emitting diode chip to white light. The optical disk includes a tapered surface such that a center area of the disk has a width greater than a width of an outer area of the disk. The optical disk is formed of a silicone having at least one weight percent mix of phosphor. Various embodiments of this generally described optical disk are also presented.
摘要:
A lighting module comprising a base panel and a plurality of light-emitting diode (LED) chips attached directly to the base panel. The LED chips are in electrical communication with conductive traces on the base panel, which deliver a current to the LED chips. Various embodiments of this generally described lighting module are also presented. Additionally, methods of preparing such a lighting module, and system components of the lighting module are presented.
摘要:
Described herein are electronic assemblies including a subassembly film and methods for making the same. In some embodiments, a first subassembly is formed by placing an electronic die at a die placement location on a subassembly film. A second subassembly may be formed by placing the first subassembly at a subassembly placement position on a base layer, such that electrical contacts/traces on the first film overlap with electrical contacts/traces at a subassembly connection point on the base layer. Placement of the die on the subassembly film may be performed with automatic placement machinery that has a placement accuracy that is greater than that required to place the first subassembly on the base layer. As a result, the costly and time consuming manual inspection of die placement may be avoided.
摘要:
Systems and methods for protecting electrical components such as light emitting diodes are described. In some embodiments, electrical components are protected from high level electrostatic discharge (“ESD”) events by a circuit board that provides an intrinsic level of ESD protection. At the same time, such electrical components are protected against low level ESD events by one or more diodes that are electrically coupled thereto. The one or more diodes may be thin film diodes comprising at least one layer of p-type semiconductive material and at least one layer of n-type semiconductive material. Devices including ESD protection and methods for manufacturing such devices are also described.
摘要:
Systems and methods for protecting electrical components such as light emitting diodes are described. In some embodiments, electrical components are protected from high level electrostatic discharge (“ESD”) events by a circuit board that provides an intrinsic level of ESD protection. At the same time, such electrical components are protected against low level ESD events by one or more diodes that are electrically coupled thereto. The one or more diodes may be thin film diodes comprising at least one layer of p-type semiconductive material and at least one layer of n-type semiconductive material. Devices including ESD protection and methods for manufacturing such devices are also described.
摘要:
In general, one embodiment of the present disclosure includes a horticulture lighting device having a plurality of LED light channels that may be selectively energized to produce a predefined light pattern. Each of the LED light channels may emit one or more wavelengths and may be pulsed at a rate that may be imperceivable to a human eye, e.g., at 120 Hz to 720 Hz. Plants may respond biochemically to light patterns that include a period of delay between pulses of light, e.g., from 500 microseconds to 5 milliseconds. The biochemical response has been shown to significantly increase plant growth, e.g., up to 100%, relative to plants grown with lighting systems that use continuous, non-pulsing light sources. Thus, aspects and embodiments disclosed herein include a horticulture device capable of emitting light patterns which introduce a predefined delay period between energizing/pulsing of LED light channels to aid photosynthesis.
摘要:
Various implementations disclosed herein includes a method for operating lighting fixtures in horticultural applications. The method may include receiving a user input of a desired irradiance for a first color channel of one or more lighting fixtures that irradiates a plant bed, in which each of the one or more lighting fixtures comprises at least one light emitting diode (LED) array, determining, for each of the one or more lighting fixtures, a PWM setting of the first color channel such that each of the one or more lighting fixtures irradiate the plant bed at the desired irradiance based on calibration data stored in each of the one or more lighting fixtures, and applying, to each of the one or more lighting fixtures, the determined PWM setting of the first color channel.
摘要:
Techniques are disclosed for making a flexible laminated circuit board using a metal conductor onto which a SMD may be attached. Conductive metal strips may be laminated to form a flexible substrate and the metal strips may then be perforated for the placement of LED package leads. The LED packages may be attached to the conductive strips using solder or a conductive epoxy and the upper laminate layer may include perforations exposing portions of the metal strips for the attachment of the LED packages. Alternatively, strings of LED packages may be fabricated by attaching LED packages to conductive strips and these strings may be laminated between flexible sheets to form a laminated LED circuit. Plastic housings may aid in attaching the LED packages to the conductive strips. The plastic housings and/or the laminate sheets may be made of a reflective material.
摘要:
Techniques are disclosed for making a flexible laminated circuit board using a metal conductor onto which a SMD may be attached. Conductive metal strips may be laminated to form a flexible substrate and the metal strips may then be perforated for the placement of LED package leads. The LED packages may be attached to the conductive strips using solder or a conductive epoxy and the upper laminate layer may include perforations exposing portions of the metal strips for the attachment of the LED packages. Alternatively, strings of LED packages may be fabricated by attaching LED packages to conductive strips and these strings may be laminated between flexible sheets to form a laminated LED circuit. Plastic housings may aid in attaching the LED packages to the conductive strips. The plastic housings and/or the laminate sheets may be made of a reflective material.