摘要:
Disclosed is a method of making a semiconductor device that exemplarily comprises depositing a Ti/Pt layer onto a AuBe intermediate layer on a p-doped region of a semiconductor body. It also comprises depositing a Ti/Pt layer onto a n-doped region of the semiconductor body, or onto a AuGe intermediate layer on the n-doped region, followed by rapid thermal processing. Exemplarily, the device is a semiconductor laser, the n-doped region is InP, the p-doped region is InGaAs or InGaAsP, and RTP involves heating in the range 425.degree.-500.degree. C. for 10-100 seconds. The method comprises fewer processing steps than typical prior art methods, reduces the danger of fabrication error and of wafer breakage and, significantly, results in contacts that can be relatively thermally stable and can have very low specific contact resistance (exemplarily as low as 10.sup.-7 .OMEGA..multidot.cm.sup.2).
摘要:
The inventive method of producing a device having non-alloyed ohmic contacts of common composition to both an n-doped and a p-doped region of a semiconductor body comprises deposition of a Ti/Pt layer on the p-doped as well as the n-doped region, followed by rapid thermal processing (RTP). Exemplarily, the device is a semiconductor laser, the n-doped region is InP, the p-doped region is InGaAs or InGaAsP, and RTP involves heating in the range 425.degree.-475.degree. C. for 10-100 seconds. The method comprises fewer processing steps than typical prior art methods, reduces the danger of fabrication error and of wafer breakage and, significantly, results in contacts that can be relatively thermally stable and can have very low specific contact resistance (exemplarily as low as 10.sup.-7 .OMEGA..multidot.cm.sup.2).
摘要:
A method of forming a self-aligned contact on a semiconductor includes forming a layer of a dielectric material over a semiconductor, providing a photoresist layer over the dielectric layer and then exposing the photoresist layer with a desired pattern and developing an opening in the photoresist layer. The dielectric material exposed through the photoresist layer opening is then removed to form a contact opening extending through the dielectric material to the semiconductor. The photoresist layer is then eroded so as to enlarge the size of the opening in the photoresist layer, whereby the dielectric material adjacent the contact opening is exposed through the enlarged opening of the photoresist layer. A barrier metal is then deposited in the enlarged opening of the photoresist layer and in the contact opening of the dielectric material, whereby the barrier metal overlies the exposed portion of the dielectric material. A conductive metal is then deposited atop the barrier metal. The barrier metal isolates the contact metal from the semiconductor, thereby preventing interaction or intermixing of the contact metal and the semiconductor.
摘要:
Light emitting diodes such as those formed from gallium nitride based semiconductors are provided with electrode and pad structures which facilitate current spreading. The LED may be formed as a die with a lower contact surface and a mesa projecting upwardly from the lower contact surface. An electrode on the lower contact surface may be in the form of a ring substantially encircling the mesa. In other arrangements, the pad and/or electrode on the lower contact surface is disposed in an indentation on one edge of the mesa whereas the pad on the top of the mesa is disposed adjacent the opposite edge of the mesa.
摘要:
Lasers for use in multichannel analog optical fiber communication systems (e.g., of the type contemplated for CATV) have to meet very stringent requirements, including high linearity. DFB lasers are advantageously used in such communication systems. Typically only a relatively small percentage of the nominally identical DFB lasers on a wafer meet the specifications. It has now been discovered that the likelihood that a given DFB laser will meet the requirements is substantially increased if the laser comprises means that are adapted for producing a non-uniform photon density in the laser cavity, with the density of photons being larger in the rear portion of the cavity than in the front portion, such that during operation of the laser the gain in the back portion is substantially independent of the laser current, whereas the gain in the front portion is a function of the laser current. A particular embodiment of the invention is a "bare patch" DFB laser having a grating that extends only part way from the front facet towards the back facet, such that a portion of the laser cavity does not have the grating associated therewith. The design ensures that the proper photon density is established within the laser cavity with high probability, largely independent of the rear (HR) facet reflection phase.
摘要:
A contact structure and method of bonding III-V semiconductors which prevents shorting of the edges of the semiconductor chip and also allows the chip to be bonded with either major surface facing upward. Both surfaces include a gold pad surrounded by a material which is immiscible with the preform metal used to bond the chip to an outside surface. During fluxless bonding between the gold pad on one surface of the chip and the preform, the preform metal is prevented from wetting the edges of the chip. The opposite surface of the chip can be electrically contacted by wire bonding to the gold pad on that surface.
摘要:
A method of producing patternable resistive regions in III-V compound semiconductor devices and a resulting device structure having improved current characteristics. III-V semiconductor substrates are irradiated with inert ions to produce a resistive region therein. At least one epitaxial layer is grown over the substrate while maintaining the resistive characteristics within the substrate. A second resistive region is then formed in at least the top epitaxial layer. This second resistive region is aligned with the first one in order to minimize current spread through the device.
摘要:
A buried double heterostructure laser device isdescribed. A wafer of double heterostructure material is formed into narrow mesa stripes. A native oxide coating is formed on the side walls of the mesa. Semiconductor material having an index of refraction which is closely matched to the index of the active region is deposited over the mesa structure. High resistivity polycrystalline material forms on the native oxide and monocrystalline material forms on the top of the mesa. Vertical carrier and optical confinement is achieved by the higher bandgap cladding layers of the double heterostructure configuration. The native oxide acts as an electrical insulator to confine pumping current to the mesa. The closely matched polycrystalline material confines light parallel to the junction plane and prevents excitation of higher order transverse modes. Devices have been fabricated which exhibit cw threshold currents at room temperature as low as 55 mA.
摘要:
Disclosed is a method of bonding microelectronic chips to bonding surfaces utilizing thin, soft bonding material preforms. The bonding material, such as indium, is formed on a carrier strip. A portion of the material is transferred from the strip by bringing it in contact with the bonding surface and supplying pressure to the strip. The chip may then be bonded to the coated surface.
摘要:
A method for aligning an opto-electronic device such as a semiconductor laser to a waveguide on a substrate is disclosed. The method comprises placing the device onto the substrate such that it is in rough alignment with the waveguide, optically pumping the device such that the device emits electromagnetic radiation, with some of the emitted radiation being coupled into the waveguide and detected by appropriate means. If indicated by the detector signal, the position of the device is then adjusted until the desired degree of coupling is attained, whereupon the device is mechanically secured to the substrate and appropriate electrical connections made between device and substrate. Devices useful in the practice of the method typically comprise a window in their top metallization layer.