摘要:
A semiconductor device having both functional and non-functional or dummy lines, regions and/or patterns to create a topology that causes the subsequently formed spacers to be more predictable and uniform in shape and size.
摘要:
Methods and arrangements are provided to increase the process control during the formation of spacers within a semiconductor device. The methods and arrangements include the use of non-functional or dummy lines, regions and/or patterns to create a topology that causes the subsequently formed spacers to be more predictable and uniform in shape and size.
摘要:
During damascene formation of local interconnects in a semiconductor wafer, a punch-through region can be formed into the substrate as a result of exposing the oxide spacers that are adjacent to a transistor gate to one or more etching plasmas that are used to etch one or more overlying dielectric layers. A punch-through region can damage the transistor circuit. Improved, multipurpose spacers are provided to reduce the chances of over-etching. The multipurpose spacers are made of silicon oxime. The etching plasmas that are used to etch one or more overlying dielectric layers tend to have a higher selectivity ratio to the multipurpose spacers than to the conventional oxide spacers. Additionally, the multipurpose spacers do not tend to degrade the hot carrier injection (HCI) properties as would a typical nitride spacer.
摘要:
A gate is formed on a semiconductor substrate by using a bottom anti-reflective coating (BARC) to better control the critical dimension (CD) of the gate as defined via a deep-UV resist mask formed thereon. The wafer stack includes a gate oxide layer over a semiconductor substrate, a polysilicon gate layer over the gate oxide layer, a SiON BARC over the conductive layer, a thin oxide film over the SiON BARC. The resist mask is formed on the oxide film. The SiON BARC improves the resist mask formation process. The wafer stack is then shaped to form one or more polysilicon gates by sequentially etching through selected portions of the oxide film, the BARC, and the gate conductive layer as defined by the etch windows in the resist mask. Once properly shaped, the remaining portions of the resist mask, oxide film and SiON BARC are removed.
摘要:
A method is provided for removing an bottom anti-reflective coating (BARC) from a transistor gate following at least one etch back process associated with a spacer formation and/or subsequent resistor protect etching process or processes. The method eliminates the need to use HF acid in the stripping process by substantially reducing the thickness of the BARC during each of the etching back processes, such that, only a thin layer of BARC material remains that can be easily removed with phosphoric acid.
摘要:
A multipurpose cap layer serves as a bottom anti-reflective coating (BARC) during the formation of a resist mask, a hardmask during subsequent etching processes, a hardened surface during subsequent deposition and planarization processes, and optionally as a diffusion barrier to mobile ions from subsequently deposited materials.
摘要:
Methods of making an organic memory cell made of two electrodes with a controllably conductive media between the two electrodes are disclosed. The controllably conductive Media contains an organic semiconductor layer and passive layer. In particular, novel methods of forming a electrode and adjacent passive layer are described.
摘要:
A method of making organic memory cells made of two electrodes with a controllably conductivce media between the two electrodes is disclosed. The controllably conductive media contains an organic semiconductor layer and passive layer. The organic semiconductor layer is formed using spin-on techniques with the assistance of certain solvents.
摘要:
The present invention provides a method for manufacturing a semiconductor device with a bottom anti-reflective coating (BARC) that acts as an etch stop layer and does not need to be removed. In one embodiment, electrical devices are formed on a semiconductor substrate. Contacts are then formed for each electrical device and a partially UV transparent BARC is then deposited. An inter-layer dielectric (ILD) layer is then formed and then covered with photoresist. A top ARC (TARC) is then added and the photoresist is then photolithographically processed and subsequently developed. The TARC, ILD, and BARC layers are then selectively etched down to the device contacts forming local interconnects. The photoresist and TARC are later removed, but the BARC does not require removal due to its optical transparency.
摘要:
One aspect of the present invention relates to a method of fabricating a polymer memory device in a via. The method involves providing a semiconductor substrate having at least one metal-containing layer thereon, forming at least one copper contact in the metal-containing layer, forming at least one dielectric layer over the copper contact, forming at least one via in the dielectric layer to expose at least a portion of the copper contact, forming a polymer material in a lower portion of the via, and forming a top electrode material layer in an upper portion of the via.