摘要:
Methods for treating water to remove radium include contacting the water with a magnetic adsorbent comprising manganese oxide(s), and applying a magnetic field to separate the magnetic adsorbent from the water, whereby radium is removed from the water. The methods may additionally include regenerating the magnetic adsorbent, and contacting the water with regenerated magnetic adsorbent. Alternately, calcium and/or strontium may be precipitated as carbonate salts from lime-treated water containing radium and barium without precipitating a significant fraction of the barium or radium; and removing radium from calcium- and strontium-free water by precipitating the barium and radium as carbonate salts. The barium- and radium carbonate precipitate may be redissolved in hydrochloric acid and disposed of by deep-well injection.
摘要:
A system includes a gas production source configured to produce a gas stream comprising nitrogen oxides (NOx) and a hydrocarbon injector disposed downstream of the gas production source and configured to inject a hydrocarbon into the gas stream. The hydrocarbon is configured to oxidize molecules of the NOx in the gas stream to produce a higher order compound of nitrogen and oxygen (NyOz). The system also includes a removal device disposed downstream of the hydrocarbon injector. The removal device is configured to remove the NyOz from the gas stream via absorption or reaction.
摘要:
Disclosed herein are various types of systems and methods for the efficient production of sulfur from a sulfur-laden gas. The system described herein includes a desulfurization unit, a regenerator receiving sulfurized mass from the desulfurization unit, a sulfur recovery unit, a sulfur track in fluid communication with the regenerator and the sulfur recovery unit, and a sulfur concentrator on a sulfur track. The sulfur stream coming out of the regenerator is concentrated using the sulfur concentrator and converted into a sulfur product at the sulfur recovery unit.
摘要:
Disclosed herein are various types of systems and methods for the efficient production of sulfur from a sulfur-laden gas. The system described herein includes a desulfurization unit, a regenerator receiving sulfurized mass from the desulfurization unit, a sulfur recovery unit, a sulfur track in fluid communication with the regenerator and the sulfur recovery unit, and a sulfur concentrator on a sulfur track. The sulfur stream coming out of the regenerator is concentrated using the sulfur concentrator and converted into a sulfur product at the sulfur recovery unit.
摘要:
Disclosed herein is a system for reducing NOx emissions comprising a fuel tank in fluid communication with a fuel converter, wherein the fuel converter is located down stream of the fuel tank and wherein the fuel converter comprises a catalyst composition that is operative to continuously convert heavy hydrocarbon molecules having 9 or more carbon atoms per molecule into light hydrocarbon molecules having 8 or less carbon atoms per molecule; a selective catalytic reduction catalyst reactor in fluid communication with the fuel converter and located downstream of the fuel converter; and an engine in fluid communication with the fuel tank and the selective catalytic reduction catalyst reactor, wherein the engine is located downstream of the fuel tank and upstream of the selective catalytic reduction catalyst reactor.
摘要:
A system includes a gas production source configured to produce a gas stream comprising nitrogen oxides (NOx) and a hydrocarbon injector disposed downstream of the gas production source and configured to inject a hydrocarbon into the gas stream. The hydrocarbon is configured to oxidize molecules of the NOx in the gas stream to produce a higher order compound of nitrogen and oxygen (NyOz). The system also includes a removal device disposed downstream of the hydrocarbon injector. The removal device is configured to remove the NyOz from the gas stream via absorption or reaction.
摘要:
A syngas cleanup section includes a water-gas shift reactor, a first operation unit and a second operation unit. The first operation unit includes a high permeance membrane with H2/CO2 selectivity in flow communication with the water-gas shift reactor to provide a H2-rich permeate stream and an H2-poor retentate stream. The second operation unit recovers H2 and CO from the retentate stream to produce a single, CO2-rich product stream, the entire content of which has a minimum pressure of at least about 10.0 bar. In one embodiment, the second operation unit includes a membrane with Knudsen selectivity for permeating H2, CO and CO2. In this embodiment, the permeate streams are combined to produce a H2 and CO-rich fuel stream used by a combined cycle power generation unit to produce electricity, and the retentate stream is sent to a catalytic oxidation unit to produce the CO2-rich product stream. In another embodiment, the second operation unit is the catalytic oxidation unit.
摘要:
A solid oxide fuel cell is disclosed. The fuel cell includes a porous anode, formed of finely-dispersed nickel/stabilized-zirconia powder particles. The particles have an average diameter of less than about 300 nanometers. They are also characterized by a tri-phase length of greater than about 50 μm/μm3. A solid oxide fuel cell stack is also described, along with a method of forming an anode for a solid oxide fuel cell. The method includes the step of using a spray-agglomerated, nickel oxide/stabilized-zirconia powder to form the anode.
摘要:
A syngas cleanup section includes a water-gas shift reactor, a first operation unit and a second operation unit. The first operation unit includes a high permeance membrane with H2/CO2 selectivity in flow communication with the water-gas shift reactor to provide a H2-rich permeate stream and an H2-poor retentate stream. The second operation unit recovers H2 and CO from the retentate stream to produce a single, CO2-rich product stream, the entire content of which has a minimum pressure of at least about 10.0 bar. In one embodiment, the second operation unit includes a membrane with Knudsen selectivity for permeating H2, CO and CO2. In this embodiment, the permeate streams are combined to produce a H2 and CO-rich fuel stream used by a combined cycle power generation unit to produce electricity, and the retentate stream is sent to a catalytic oxidation unit to produce the CO2-rich product stream. In another embodiment, the second operation unit is the catalytic oxidation unit.
摘要:
A method of preparing cellular pellets from a prepolymer comprising a blowing agent, the method comprising the steps of: a) extruding the prepolymer through a die, the die maintained at conditions such that the blowing agent remains in the condensed phase in the prepolymer prior to emerging from the die, and b) upon emergence of the prepolymer through the die, substantially simultaneously cooling the prepolymer by contacting the prepolymer with a cooling agent and cutting the prepolymer; the conditions outside the die being maintained such that the blowing agent vaporizes in the prepolymer to form pores.