摘要:
Technology is discussed for supporting wireless communication paths from an antenna array with a vertical directional component. Examples reduce training feedback for increased numbers of communication paths by only reporting on a subset of Reference Signals (RSs) provided for various vertical beam configurations. Additional examples reduce feedback with virtual measurements based on a difference between RS measurements. One such measurement can come from full set of RSs for a reference beam configuration and another from a partial set of RSs for an additional beam configuration. Such virtual measurements can also be based on cross correlation for beamforming weights associated with the two configurations. Several examples of preparing and sending measurement reports consistent with Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) standards are discussed. The supporting technology also increases diversity and reduces a power differential between spatially multiplexed layers transmitting a common codeword.
摘要:
Technology is discussed for supporting wireless communication paths from an antenna array with a vertical directional component. Examples reduce training feedback for increased numbers of communication paths by only reporting on a subset of Reference Signals (RSs) provided for various vertical beam configurations. Additional examples reduce feedback with virtual measurements based on a difference between RS measurements. One such measurement can come from full set of RSs for a reference beam configuration and another from a partial set of RSs for an additional beam configuration. Such virtual measurements can also be based on cross correlation for beamforming weights associated with the two configurations. Several examples of preparing and sending measurement reports consistent with Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) standards are discussed. The supporting technology also increases diversity and reduces a power differential between spatially multiplexed layers transmitting a common codeword.
摘要:
Techniques for efficient small cell discovery are described. In one embodiment, for example, an evolved node B (eNB) may comprise logic, at least a portion of which is in hardware, the logic to determine a discovery signal transmission schedule for a series of radio frames based on a discovery signal muting pattern specifying at least one discovery-muted radio frame among the series of radio frames, and a transceiver to transmit at least one primary synchronization signal (PSS) and at least one secondary synchronization signal (SSS) during the series of radio frames according to the discovery signal transmission schedule. Other embodiments are described and claimed.
摘要:
In embodiments, an evolved Node B (eNB) of a wireless communication network may configure an enhanced physical downlink control channel (EPDCCH) physical resource block (PRB) set for a user equipment (UE). The EPDCCH-PRB set may include a plurality of PRB-pairs. The EPDCCH-PRB set may further include a plurality of enhanced resource element groups (EREGs) organized into localized enhanced control channel elements (ECCEs) having EREGs of the same PRB-pair and distributed ECCEs having EREGs of different PRB-pairs. In some embodiments, the eNB may determine a set of distributed EPDCCH candidates for the UE from the EPDCCH-PRB set, wherein the individual distributed EPDCCH candidates include one or more of the distributed ECCEs, and wherein the set of distributed EPDCCH candidates includes at least one EREG from each of the plurality of localized ECCEs. Other embodiments may be described and claimed.
摘要:
Technology for blind decoding downlink control information (DCI) from an enhanced physical downlink control channel (EPDCCH) is disclosed. In an example, a user equipment (UE) can include a processor configured to: Recursively attempt to decode the DCI from enhanced control channel elements (ECCE) of the EPDCCH from physical resource block (PRB) region candidates in a PRB set using a selected set of enhanced resource element group (EREG) index maps for the ECCE until the DCI is successfully decoded; and decode the DCI with an EREG index map associated with a same aggregation level used to encode the DCI. Each EREG index map can be configured for a different aggregation level (AL).
摘要:
Generally, this disclosure provides devices, systems and methods for Cross-Carrier Quasi Co-Location Signaling in an NCT Wireless Network. A UE device may include a receiver circuit to receive a QCL signaling message from a primary cell, the QCL signaling message for a configured secondary cell to identify a primary or one or more secondary cells that are Quasi Co-located with the secondary cell for which the message is provided. The UE device may also include a QCL signal decoding module to decode the QCL signaling message and to determine QCL synchronization parameters. The UE device may further include a synchronization module to synchronize the UE with the primary or one or more secondary cells based on the QCL synchronization parameters obtained from the QCL message received from the primary cell.
摘要:
In embodiments, an eNodeB (eNB) may include a sequence generator to identify an initialization parameter for a pseudo-random sequence. The initialization parameter may have a periodicity greater than one radio frame of a radio signal. The sequence generator may then generated a pseudo-random sequence based at least in part on the initialization parameter, and then generate a reference signal based on the pseudo-random sequence. The eNB may further include a transmitter that is coupled with the sequence generator and is to transmit the reference signal in a subframe of the radio signal.
摘要:
Uplink communication techniques for non-ideal backhaul scenarios are described. In one embodiment, for example, user equipment (UE) may comprise logic, at least a portion of which is in hardware, the logic to receive an uplink (UL) communication process configuration message identifying a configured UL communication process for the UE, the UL communication process configuration message comprising a cell identifier and one or more configuration information elements (IEs), each configuration IE comprising configuration information for UL communications on the part of the UE, the logic to send a UL message based on the configuration information comprised in at least one of the configuration IEs. Other embodiments are described and claimed.
摘要:
Generally, this disclosure provides apparatus and methods for improved control channel monitoring in a New Carrier Type (NCT) wireless network. A User Equipment (UE) device may include a receiver circuit to receive a Multicast/Broadcast over Single Frequency Network (MBSFN) for Physical Multicast Channel (P-MCH) transmission from an evolved Node B (eNB); an MBSFN for P-MCH detection module to detect and extract an enhanced physical downlink control channel (EPDCCH) signal from the MBSFN subframe for P-MCH transmission; and an EPDCCH monitor module to decode and monitor the extracted EPDCCH signal.
摘要:
Technology for device discovery using a device-to-device (D2D) sounding reference signal (SRS) and device discovery using D2D SRS in a channel measurement group (CMG) is disclosed. In an example, a user equipment (UE) configured for device discovery via a node using the D2D SRS can include a transceiver module. The transceiver module can send a radio resource control (RRC) device discovery request to a node, scan D2D SRS subframes of proximity UEs using D2D SRS triggering, and send feedback to the node of detected D2D SRS information of the proximity UEs. The proximity UE can be located within a same cell as the UE.