摘要:
In embodiments, an evolved Node B (eNB) of a wireless communication network may configure an enhanced physical downlink control channel (EPDCCH) physical resource block (PRB) set for a user equipment (UE). The EPDCCH-PRB set may include a plurality of PRB-pairs. The EPDCCH-PRB set may further include a plurality of enhanced resource element groups (EREGs) organized into localized enhanced control channel elements (ECCEs) having EREGs of the same PRB-pair and distributed ECCEs having EREGs of different PRB-pairs. In some embodiments, the eNB may determine a set of distributed EPDCCH candidates for the UE from the EPDCCH-PRB set, wherein the individual distributed EPDCCH candidates include one or more of the distributed ECCEs, and wherein the set of distributed EPDCCH candidates includes at least one EREG from each of the plurality of localized ECCEs. Other embodiments may be described and claimed.
摘要:
Technology is discussed for supporting wireless communication paths from an antenna array with a vertical directional component. Examples reduce training feedback for increased numbers of communication paths by only reporting on a subset of Reference Signals (RSs) provided for various vertical beam configurations. Additional examples reduce feedback with virtual measurements based on a difference between RS measurements. One such measurement can come from full set of RSs for a reference beam configuration and another from a partial set of RSs for an additional beam configuration. Such virtual measurements can also be based on cross correlation for beamforming weights associated with the two configurations. Several examples of preparing and sending measurement reports consistent with Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) standards are discussed. The supporting technology also increases diversity and reduces a power differential between spatially multiplexed layers transmitting a common codeword.
摘要:
Technology is discussed for supporting wireless communication paths from an antenna array with a vertical directional component. Examples reduce training feedback for increased numbers of communication paths by only reporting on a subset of Reference Signals (RSs) provided for various vertical beam configurations. Additional examples reduce feedback with virtual measurements based on a difference between RS measurements. One such measurement can come from full set of RSs for a reference beam configuration and another from a partial set of RSs for an additional beam configuration. Such virtual measurements can also be based on cross correlation for beamforming weights associated with the two configurations. Several examples of preparing and sending measurement reports consistent with Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) standards are discussed. The supporting technology also increases diversity and reduces a power differential between spatially multiplexed layers transmitting a common codeword.
摘要:
Technology for blind decoding downlink control information (DCI) from an enhanced physical downlink control channel (EPDCCH) is disclosed. In an example, a user equipment (UE) can include a processor configured to: Recursively attempt to decode the DCI from enhanced control channel elements (ECCE) of the EPDCCH from physical resource block (PRB) region candidates in a PRB set using a selected set of enhanced resource element group (EREG) index maps for the ECCE until the DCI is successfully decoded; and decode the DCI with an EREG index map associated with a same aggregation level used to encode the DCI. Each EREG index map can be configured for a different aggregation level (AL).
摘要:
Techniques for efficient small cell discovery are described. In one embodiment, for example, an evolved node B (eNB) may comprise logic, at least a portion of which is in hardware, the logic to determine a discovery signal transmission schedule for a series of radio frames based on a discovery signal muting pattern specifying at least one discovery-muted radio frame among the series of radio frames, and a transceiver to transmit at least one primary synchronization signal (PSS) and at least one secondary synchronization signal (SSS) during the series of radio frames according to the discovery signal transmission schedule. Other embodiments are described and claimed.
摘要:
Technology for allocating at least one physical resource block (PRB) for an Enhanced Physical Hybrid-ARQ Indicator Channel (EPHICH) transmission for a New Carrier Type (NCT) is disclosed. In one method, a number of bits associated with channel coding for an acknowledgement (ACK) or negative acknowledgement (NACK) in the EPHICH transmission is determined. A plurality of modulation symbols for each ACK or NACK in the EPHICH transmission is generated based in part on the number of bits associated with the ACK or NACK. The plurality of modulation symbols are mapped as EPHICH quadrants in one or more resource element blocks (REGs), wherein the EPHICH quadrants are mapped to a plurality of physical resource blocks (PRBs) allocated for EPHICH to increase frequency diversity gain.
摘要:
Technology to provide conditional physical uplink control channel (PUCCH) resource allocation in time division duplex (TDD) for a hybrid automatic retransmission request-acknowledge (HARQ-ACK) transmission in a subframe n is disclosed. In an example, a user equipment (UE) can include computer circuitry configured to: Receive a downlink control channel within a prior specified subframe, wherein the prior specified subframe occurs in time before the subframe n; recognize a downlink control channel type received within the prior specified subframe is a physical downlink control channel (PDCCH) or an enhanced physical downlink control channel (EPDCCH); determine a PUCCH resource for the HARQ-ACK transmission using a lowest control channel element (CCE) index of the PDCCH when the received downlink control channel type is the PDCCH; and determine the PUCCH resource for the HARQ-ACK transmission using a lowest enhanced CCE (ECCE) index of the EPDCCH when the received downlink control channel type is the EPDCCH.
摘要:
Methods, apparatuses, and systems are described to provide enhanced physical downlink control channel scrambling and demodulation reference signal sequence generation.
摘要:
Technology for communicating enhanced physical downlink control channels (ePDCCHs) configured for inter-cell interference coordination (ICIC) for a plurality of cells in a physical resource block (PRB) is disclosed. One method can include a node mapping a serving cell control channel element (CCE) in an serving cell ePDCCH in a PRB and a coordination cell CCE in a coordination cell ePDCCH in the PRB. The node can transmit the map of the serving cell CCE and the coordination cell CCE to a wireless device.
摘要:
Technology for communicating enhanced physical downlink control channels (ePDCCHs) configured for inter-cell interference coordination (ICIC) for a plurality of cells in a physical resource block (PRB) is disclosed. One method can include a node mapping a serving cell control channel element (CCE) in an serving cell ePDCCH in a PRB and a coordination cell CCE in a coordination cell ePDCCH in the PRB. The node can transmit the map of the serving cell CCE and the coordination cell CCE to a wireless device.