Abstract:
Described herein are methods of recovering lithium from dilute lithium sources. The methods include extracting lithium from an extraction feed using direct lithium extraction in an extraction stage to yield a lithium intermediate, performing one or more concentration operations, each concentration operation concentrating an input stream to yield an output feed, wherein the input stream is obtained from the lithium intermediate and/or the extraction feed is obtained from the output feed. At least one of the concentration operations includes a membrane separation operation having a plurality of reactors in series each having a semi-permeable membrane, such as a counter-flow reverse osmosis operation. Methods may also include generating a low TDS stream as a permeate from any of the one or more concentration operations, wherein the low TDS stream is recycled or used as fresh water.
Abstract:
A method of preparing a Senna obtusifolia seed extract rich in anthraquinones and a galactomannan extract includes the following steps: (1) crushing Senna obtusifolia seeds into a Senna obtusifolia seed powder; (2) extracting the Senna obtusifolia seed powder with 40-85% ethanol, filtering to obtain an extract solution and a residue; (3) concentrating the extract solution under vacuum to obtain a concentrated extract solution, spray-drying the concentrated extract solution to obtain the Senna obtusifolia seed extract; (4) extracting the residue with membrane filtered water, conducting a centrifugation to obtain a supernatant; (5) adding ammonium sulfate and ethanol to the supernatant to form a two-phase aqueous system, collecting a bottom layer of the two-phase aqueous system; and (6) conducting an ultrafiltration of the bottom layer with a cut-off molecular weight of 50 k-200 k to obtain a galactomannan extract solution, drying the galactomannan extract solution under vacuum to obtain the galactomannan extract.
Abstract:
In various aspects, methods and apparatuses for liquid-liquid extraction are provided. In certain aspects, an emulsion can be formed by combining a feed stream, an extractant, and a surfactant. The feed stream comprises a plurality of distinct components including a first component to be removed therefrom. The feed stream may be selected from a group consisting of: a hydrocarbon feed stream and an azeotrope. Then, a portion of the first component is extracted from the feed stream (or emulsion) by contact with a superoleophobic and hygroscopic membrane filter that facilitates passage of the first component and extractant through the superoleophobic and hygroscopic membrane filter. A purified product is collected having the portion of the first component removed. Such methods are particularly useful for refining fuels and oils and separating azeotropes and other miscible component systems. Energy-efficient, continuous single unit operation apparatuses for conducting such separation techniques are also provided.
Abstract:
Disclosed is a process for the alteration of the ratio of the specific gravities of the oil and water phases resulting from the conversion of biomass to liquid products, the reduction of the conductivity and of metals of the product mixture, which each can aid in the removal of solids contained in the oil phase; and a liquid-liquid extraction method for partitioning desirable carbon containing compounds into the oil phase and undesirable carbon containing compounds into the water phase.
Abstract:
A highly cost-efficient method and process for producing oxygen from a gaseous mixture such as air results in substantial energy savings compared to conventional methods. The gaseous mixture is fed to a membrane absorber in which oxygen from the gas is absorbed, through a first membrane by an oxygen-absorbing liquid that possesses suitable absorption and desorption properties. The resulting oxygen-rich carrier liquid is fed to a membrane desorber in which oxygen from the liquid is desorbed through a second membrane, suitably with the aid of a vacuum. The oxygen product suitably has greater than 95% purity, or greater than 99% purity.
Abstract:
A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.
Abstract:
A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.
Abstract:
A method of extracting ethanol from a feed solution using a liquid-liquid extraction system including an outer chamber and an inner chamber. The outer chamber is adapted to contain one of a feed solution and a liquid extractant and defines a containment region. The inner chamber is adapted to contain the other of the feed solution and the liquid extractant within a lower portion of the inner chamber. The inner chamber is defined by a microporous membrane sleeve that internally maintains a frame. Upon final assembly, at least the lower portion of the inner chamber is positioned within the containment region of the outer chamber such that the microporous membrane sleeve establishes an extraction interface between contents of the inner and outer chambers.
Abstract:
Systems and methods for removing lipids from a fluid, such as plasma, or from lipid-containing organisms. A fluid is combined with at least one extraction solvent, which causes the lipids to separate from the fluid or from lipid-containing organisms. The separated lipids are removed from the fluid. The extraction solvent is removed from the fluid or at least reduced to an acceptable concentration enabling the delipidated fluid to be administered to a patient without the patient experiencing undesirable consequences. Once the fluid has been processed, the fluid may be administered to a patient who donated the fluid, to a different patient, or stored for later use.
Abstract:
The invention relates to a dialysis method of recovering foreign substances, particularly low-molecular weight inorganic and/or organic substances, from semipermeable membrane of varying length and dimensions, using a PLE (pressurized liquid extraction) apparatus. The membranes are preferably in the form of a tube, for example semipermeable membrane devices (SPMDs) which, in the form of passive samplers, accumulate foreign substances/pollutants on an absorbent or adsorbent.