Abstract:
Method of manufacturing electronic devices using a maskless lithographic exposure system using a maskless pattern writer, wherein beamlet control data is generated for controlling the maskless pattern writer to expose a wafer for creation of the electronic devices. The beamlet control data is generated based on design layout data defining a plurality of structures, such as vias, for the electronic devices to be manufactured from the wafer, and selection data defining which of the structures of the design layout data are applicable for each electronic device to be manufactured from the wafer, the selection data defining a different set of the structures for different subsets of the electronic devices. Exposure of the wafer according to the beamlet control data results in exposing a pattern having a different set of the structures for different subsets of the electronic devices.
Abstract:
The invention relates to a collimator electrode stack (70), comprising: —at least three collimator electrodes (71-80) for collimating a charged particle beam along an optical axis (A), wherein each collimator electrode comprises an electrode body with an electrode aperture for allowing passage to the charged particle beam, wherein the electrode bodies are spaced along an axial direction (Z) which is substantially parallel with the optical axis, and wherein the electrode apertures are coaxially aligned along the optical axis; and —a plurality of spacing structures (89) provided between each pair of adjacent collimator electrodes and made of an electrically insulating material, for positioning the collimator electrodes at predetermined distances along the axial direction. Each of the collimator electrodes (71-80) is electrically connected to a separate voltage output (151-160).The invention further relates to a method of operating a charged particle beam generator.
Abstract:
Method of manufacturing electronic devices using a maskless lithographic exposure system using a maskless pattern writer, wherein beamlet control data is generated for controlling the maskless pattern writer to expose a wafer for creation of the electronic devices. The beamlet control data is generated based on design layout data defining a plurality of structures, such as vias, for the electronic devices to be manufactured from the wafer, and selection data defining which of the structures of the design layout data are applicable for each electronic device to be manufactured from the wafer, the selection data defining a different set of the structures for different subsets of the electronic devices. Exposure of the wafer according to the beamlet control data results in exposing a pattern having a different set of the structures for different subsets of the electronic devices.
Abstract:
The invention relates to a method for performing charged particle beam proximity effect correction, comprising the steps of: receiving a digital layout pattern to be patterned onto a target using one or more charged particle beams; selecting a base proximity function comprising a sum of an alpha and a beta proximity function, wherein said alpha proximity function models a short range proximity effect and said beta proximity function models a long range proximity effect, wherein a constant η is defined as a ratio between the beta proximity function and the alpha proximity function in said sum, with 0
Abstract:
The invention relates to a method of exposing a target by means of a plurality of beamlets. First, a plurality of beamlets is provided. The beamlets are arranged in an array. Furthermore, a target to be exposed is provided. Subsequently, relative movement in a first direction between the plurality of beamlets and the target is created. Finally, the plurality of beamlets is moved in a second direction, such that each beamlet exposes a plurality of scan lines on the target. The relative movement in the first direction and the movement of the plurality of beamlets in the second direction are such that the distance between adjacent scan lines exposed by the plurality of beamlets is smaller than a projection pitch Pproj,X in the first direction between beamlets of the plurality of beamlets in the array.
Abstract:
The invention relates to a charged particle lithography system for patterning a target. The lithography system has a beam generator for generating a plurality of charged particle beamlets, a beam stop array with a beam-blocking surface provided with an array of apertures; and a modulation device for modulating the beamlets by deflection. The modulation device has a substrate provided with a plurality of modulators arranged in arrays, each modulator being provided with electrodes extending on opposing sides of a corresponding aperture. The modulators are arranged in groups for directing a group of beamlets towards a single aperture in the beam stop array. Individual modulators within each group have an orientation such that a passing beamlet, if blocking is desired, is directed to a blocking position onto the beam stop array. Beamlet blocking positions for different beamlets are substantially homogeneously spread around the corresponding single aperture in the beam stop array.
Abstract:
The present invention relates to a method and encoding device for encoding a sequence of m-bit pattern words and outputting as a bit-stream a frame comprising corresponding n-bit symbols as well as a predetermined comma symbol, wherein m
Abstract:
A method for exposing a wafer according to pattern data using a charged particle lithography machine generating a plurality of charged particle beamlets for exposing the wafer. The method comprises providing the pattern data in a vector format, rendering the vector pattern data to generate multi-level pattern data, dithering the multi-level pattern data to generate two-level pattern data, supplying the two-level pattern data to the charged particle lithography machine, and switching on and off the beamlets generated by the charged particle lithography machine on the basis of the two-level pattern data, wherein the pattern data is adjusted on the basis of corrective data.
Abstract:
The invention relates to a invention relates to a method and decoding device for receiving an input bit-stream comprising a sequence of n-bit pattern symbols as well as a unique n-bit comma symbol for synchronization, and for generating therefrom a synchronized output comprising a sequence of m-bit pattern words, with m
Abstract:
A charged particle lithography system for transferring a pattern onto the surface of a target, comprising a source for generating a charged particle beam, a first chamber housing the source, a collimating system for collimating the charged particle beam, a second chamber housing the collimating system, and a first aperture array element for generating a plurality of charged particle subbeams from the collimated charged particle beam.