Abstract:
In alternative embodiments, the invention provides computational algorithms, computer programs, software and other methods, systems and products of manufacture (e.g., computers, devices or apparatus) for identifying members of microbial communities, their abundance and distribution from amplicon sequence data, and comparing microbial communities and consortia. In alternative embodiments, the invention provides computer- implemented methods comprising a subset of, substantially all, or all of the steps as set forth in the flow chart of Figure 1, Figure 3 or Figure 4. In alternative embodiments, the invention provides methods for identification of consortia, optionally followed by construction of artificial microbial consortia from pure strains or enrichment cultures.
Abstract:
Disclosed is a method for improving the sensitivity and accuracy of quantitative detection of polynucleotides in a sample, such a clinical specimen, by a method that utilizes a two- or three-step process of tagging/labeling target molecules and adding an adapter sequence for adding a universal primer for efficient amplification of targets while decreasing target amplification bias. When combined with the step of statistically correcting for sequencing errors, the method can significantly increase the accuracy of quantitative detection of polynucleotides in a sample.
Abstract:
A fractional concentration of clinically-relevant DNA in a mixture of DNA from a biological sample is determined based on amounts of DNA fragments at multiple sizes. For example, the fractional concentration of fetal DNA in maternal plasma or tumor DNA in a patient's plasma can be determined. The size of DNA fragments in a sample is shown to be correlated with a proportion of fetal DNA and a proportion of tumor DNA, respectively. Calibration data points (e.g., as a calibration function) indicate a correspondence between values of a size parameter and the fractional concentration of the clinically-relevant DNA. For a given sample, a first value of a size parameter can be determined from the sizes of DNA fragments in a sample. A comparison of the first value to the calibration data points can provide the estimate of the fractional concentration of the clinically-relevant DNA.
Abstract:
一种两核苷酸实时合成DNA解码测序方法,单个测序反应由X、Y两个不同的核苷酸同时进行,依据合成核苷酸数目与实时产生的检测分子数的定量关系,得到一个碱基序列片段编码XY n 。整个测序包括对同一模板进行二组测序反应:每组测序由包含四个核苷酸dATP、dCTP、dGTP、dTTP,按照每个核苷酸在一个循环中只使用一次的方式,进行由两个不同核苷酸同时合成测序反应的循环,若干次测序反应后得到由一组按照测序顺序排列的若干XY n 信息;当该组测序反应完成后,变性将测序引物延伸链清除,重新杂交测序引物,进行第二组测序反应,得到第二测序反应排列的若干ΧΥ n 信息,最后通过解码二组按照测序顺序排列的若干ΧΥ n 信息,组装出待测核酸片段的具体碱基序列。
Abstract:
Aspects of the present invention are drawn to processes for moving a region of interest in a polynucleotide from a first position to a second position with regard to a domain within the polynucleotide. In certain embodiments, the method results in moving a region of interest into functional proximity to specific domain elements present in the polynucleotide (e.g., primer sites and/or MID). Compositions, kits and systems that find use in carrying out the reflex processes described herein are also provided.
Abstract:
The present invention provides methods for conducting screens using nucleic acid elements (e.g., interfering RNAs) to confidently identify hit genetic elements. The present invention further comprises constructing vectors that contain two or more nucleic acid elements to knock down all pairwise combinations of the hit genetic elements identified from the screen. Following quantitation of the single and double-knockdown phenotypes, genetic interactions between all gene pairs can be calculated. Genes can then be clustered according to the similarity of the pattern of their interactions with all of the other genes to obtain a genetic interaction map, which can advantageously be used to predict functional associations between genes and identify drug targets for therapy such as combination cancer therapy.
Abstract:
Provided herein is technology relating to genotyping and particularly, but not exclusively, to methods for genotyping one or more organisms by genome sequencing. In some embodiments of the technology, two restriction enzymes are used to generate two sites with different overhangs at each end of the digested fragments. One site is ligated with the barcode oligonucleotide to permit multiplexing of samples during analysis, e.g., sequencing. The other site is ligated with an oligonucleotide without the barcode. The number of sites targeted for analysis is further reduced by the design and selection of amplification primers complementary to the non-barcode site.
Abstract:
The present disclosure provides methods for determining the ploidy status of an embryo at a chromosome from a sample of DNA from an embryo. The ploidy state is determined by sequencing the DNA from one or more cells biopsied from the embryo, and analyzing the relative amounts of each allele at a plurality of polymorphic loci on the chromosome. In an embodiment, the ploidy state is determined by comparing the observed allele ratios to the expected allele ratios for different ploidy states. In an embodiment, the DNA is selectively amplified at a plurality of polymorphic loci by targeted sequencing. In an embodiment, the mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias.
Abstract:
The present invention provides methods and devices for performing nucleic acid amplification and sequencing on a solid substrate (e.g., a flow cell), including preparation of libraries of amplified DNA fragments for massively parallel (next-generation) sequencing.