摘要:
Methods and structures formed thereby are described, of forming self-aligned contact structures for microelectronic devices. An embodiment includes forming a trench in a source/drain region of a transistor device disposed in a device layer, wherein the device layer is on a substrate, forming a fill material in the trench, forming a source/drain material on the fill material, forming a first source/drain contact on a first side of the source/drain material, and then forming a second source drain contact on a second side of the source/drain material.
摘要:
Techniques and structure are disclosed for providing a MIM capacitor having a generally corrugated profile. The corrugated topography is provisioned using sacrificial, self-organizing materials that effectively create a pattern in response to treatment (heat or other suitable stimulus), which is transferred to a dielectric material in which the MIM capacitor is formed. The self-organizing material may be, for example, a layer of directed self-assembly material that segregates into two alternating phases in response to heat or other stimulus, wherein one of the phases then can be selectively etched with respect to the other phase to provide the desired pattern. In another example case, the self-organizing material is a layer of material that coalesces into isolated islands when heated. As will be appreciated in light of this disclosure, the disclosed techniques can be used, for example, to increase capacitance per unit area, which can be scaled by etching deeper capacitor trenches/holes.
摘要:
Embodiments of the invention describe a multi-segment optical waveguide that enables an optical modulator to be low-power and athermal by decreasing the device length needed for a given waveguide length. Embodiments of the invention describe an optical waveguide that is folded onto itself, and thus includes at least two sections. Thus, embodiments of the invention may decrease the device size of a modulator by at least around a factor of two if the device is folded twofold (device size may be further reduced if the modulator is folded threefold, fourfold, five-fold, etc.). Embodiments of the invention further enable the electrode length required to create the desired electro-optic effect for the multi- segment optical waveguide to be reduced. In embodiments of the invention, certain electrodes may be "shared" amongst the different segments of the waveguide, thereby reducing the power requirement and capacitance of a device having a waveguide of a given length.
摘要:
Embodiments of the invention describe a multi-segment optical waveguide that enables an optical modulator to be low-power and athermal by decreasing the device length needed for a given waveguide length. Embodiments of the invention describe an optical waveguide that is folded onto itself, and thus includes at least two sections. Thus, embodiments of the invention may decrease the device size of a modulator by at least around a factor of two if the device is folded twofold (device size may be further reduced if the modulator is folded threefold, fourfold, five-fold, etc.). Embodiments of the invention further enable the electrode length required to create the desired electro-optic effect for the multi- segment optical waveguide to be reduced. In embodiments of the invention, certain electrodes may be "shared" amongst the different segments of the waveguide, thereby reducing the power requirement and capacitance of a device having a waveguide of a given length.
摘要:
Techniques and structure are disclosed for enhancing fracture resistance of back-end interconnects and other such interconnect structures by increasing via density. Increased via density can be provided, for example, within the filler/dummified portion(s) of adjacent circuit layers within a die. In some cases, an electrically isolated (floating) filler line of an upper circuit layer may include a via which lands on a floating filler line of a lower circuit layer in a region corresponding to where the filler lines cross/intersect. In some such cases, the floating filler line of the upper circuit layer may be formed as a dual-damascene structure including such a via. In some embodiments, a via similarly may be provided between a floating filler line of the upper circuit layer and a sufficiently electrically isolated interconnect line of the lower circuit layer. The techniques/structure can be used to provide mechanical integrity for the die.
摘要:
A resistive random access memory (RRAM) device includes a bottom electrode disposed above a substrate, a top electrode disposed above the bottom electrode, an oxygen exchange layer disposed between the bottom electrode and the top electrode and a switching layer disposed between the bottom electrode and the top electrode. In an embodiment, the bottom or the top electrode includes at least two conductive layers, a first conductive layer and a second conductive layer disposed on the first conductive layer, where the first conductive layer has grain boundaries that are offset from grain boundaries of the second conductive layer.
摘要:
Embodiments of the present disclosure provide optical connection techniques and configurations. In one embodiment, an opto-electronic assembly includes a first semiconductor die including a light source to generate light, and a first mode expander structure comprising a first optical material disposed on a surface of the first semiconductor die, the first optical material being optically transparent at a wavelength of the light, and a second semiconductor die including a second mode expander structure comprising a second optical material disposed on a surface of the second semiconductor die, the second material being optically transparent at the wavelength of the light, wherein the second optical material is evanescently coupled with the first optical material to receive the light from the first optical material. Other embodiments may be described and/or claimed.
摘要:
Photonic components are placed on the processor package to bring the optical signal close to the processor die. The processor package includes a substrate to which the processor die is coupled, and which allows the processor die to connect to a printed circuit board. The processor package also includes transceiver logic, electrical-optical conversion circuits, and an optical coupler. The electrical-optical conversion circuits can include laser(s), modulator(s), and photodetector(s) to transmit and receive and optical signal. The coupler interfaces to a fiber that extends off the processor package. Multiple fibers can be brought to the processor package allowing for a scalable high-speed, high-bandwidth interconnection to the processor.
摘要:
A conductive route structure may be formed comprising a conductive trace and a conductive via, wherein the conductive via directly contacts the conductive trace. In one embodiment, the conductive route structure may be formed by forming a dielectric material layer on the conductive trace. A via opening may be formed through the dielectric material layer to expose a portion of the conductive trace and a blocking layer may be from only on the exposed portion of the conductive trace. A barrier line may be formed on sidewalls of the via opening and the blocking layer may thereafter be removed. A conductive via may then be formed within the via opening, wherein the conductive via directly contacts the conductive trace.