Abstract:
Multi-station process chamber lids comprising a plurality of station openings are described. A station separation purge channel is around the station openings. A plurality of angular purge channels separate station openings from adjacent station openings. A lid support beam can compensate for deflection of the chamber lid body.
Abstract:
The invention is embodied by a plasma reactor for processing a workpiece, including a reactor enclosure (105) defining a processing chamber (100), a semiconductor window (110), a base (120) within the chamber (100) for supporting the workpiece (125) during processing thereof, a gas inlet system (137) for admitting a plasma precursor gas into the chamber (100), and an inductive antenna (145) adjacent a side of the semiconductor window (110) opposite the base (120) for coupling power into the interior of the chamber (100) through the semiconductor window electrode (110).
Abstract:
Apparatus and methods to process one or more wafers are described. A first processing station has a first gas flow pattern from one or more of a first gas diffuser, a first cooling channel pattern, or a first heater. A second processing station has a second gas flow pattern from one or more of a second gas diffuser, a second cooling channel pattern, or a second heater. The second gas diffuser, the second cooling channel pattern, or the second heater is rotated or translated relative to the first gas diffuser, the first cooling channel pattern, or the first heater to provide the second gas flow pattern complementary to the first gas flow pattern.
Abstract:
Gas distribution apparatus to provide uniform flows of gases from a single source to multiple processing chambers are described. A regulator is positioned at an upstream end of a shared volume having a plurality of downstream ends. A flow controller is positioned at each downstream end of the shared volume, the flow controller comprising an orifice and a fast pulsing valve. Methods of using the gas distribution apparatus and calibrating the flow controllers are also described.
Abstract:
Generally, a robot for transferring a substrate in a processing system and a method of determining a position of the robot is provided. In one embodiment, a method of determining a position of a robot comprises acquiring a first set of positional metrics, acquiring a second set of positional metrics and resolving the position of the robot due to thermal expansion using the first set and the second set of positional metrics. Acquiring the first and second set of positional metrics may occur at the same location within a processing system, or may occur at different locations. For example, in another embodiment, the method may comprise acquiring a first set of positional metrics at a first location proximate a processing chamber and acquiring a second set of positional metrics in another location. In another embodiment, substrate center information is corrected using the determined position of the robot. The robot maybe comprised of linkages fabricated from materials selected to minimize the effects of thermal changes.
Abstract:
Apparatus and methods to process one or more substrates are described. A plurality of process stations are arranged in a circular configuration around a rotational axis. A support assembly with a rotatable center base defining a rotational axis, at least two support arms extending from the center base and heaters on each of the support arms is positioned adjacent the processing stations so that the heaters can be moved amongst the various process stations to perform one or more process condition. The support assembly configured to offset the position of the substrate with respect to the processing stations.
Abstract:
Apparatus and methods to process one or more wafers are described. A spatial deposition tool comprises a plurality of substrate support surfaces on a substrate support assembly and a plurality of spatially separated and isolated processing stations. The spatially separated isolated processing stations have independently controlled temperature, processing gas types, and gas flows. In some embodiments, the processing gases on one or multiple processing stations are activated using plasma sources. The operation of the spatial tool comprises rotating the substrate assembly in a first direction, and rotating the substrate assembly in a second direction, and repeating the rotations in the first direction and the second direction until a predetermined thickness is deposited on the substrate surface(s).
Abstract:
A vision system and method for calibrating motion of a robot disposed in a processing system is provided. In one embodiment, a vision system for a processing system includes a camera and a calibration wafer that are positioned in a processing system. The camera is positioned on the robot and is adapted to obtain image data of the calibration wafer disposed in a predefined location within the processing system. The image data is utilized to calibrate the robots motion.
Abstract:
Generally, a method of determining a position of a robot is provided. In one embodiment, a method of determining a position of a robot comprises acquiring a first set of positional metrics, acquiring a second set of positional metrics and resolving the position of the robot due to thermal expansion using the first set and the second set of positional metrics. Acquiring the first and second set of positional metrics may occur at the same location within a processing system, or may occur at different locations. For example, in another embodiment, the method may comprise acquiring a first set of positional metrics at a first location proximate a processing chamber and acquiring a second set of positional metrics in another location. In another embodiment, substrate center information is corrected using the determined position of the robot.
Abstract:
Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased throughput, increased reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also has a smaller system footprint. In one embodiment of the cluster tool, the cost of ownership is reduced by grouping substrates together and transferring and processing the substrates in groups of two or more to improve system throughput, and reduces the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, thus reducing wear on the robot and increasing system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.