Abstract:
The present invention relates to a new process for manufacturing a silicon carbide (SiC) coated body by depositing SiC in a chemical vapor deposition method using dimethyldichlorosilane (DMS) as the silane source on a graphite substrate. A further aspect of the present invention relates to the new silicon carbide coated body, which can be obtained by the new process of the present invention, and to the use thereof for manufacturing articles for high temperature applications, susceptors and reactors, semiconductor materials, and wafer.
Abstract translation:本发明提供一种在厚度方向上具有低电阻的半导体层叠体,制造半导体层叠体的方法以及包括该半导体层叠体的半导体元件。 [解决方案]提供一种半导体层叠体(1),其包括具有以六方晶格排列有氧原子的平面作为主面的Ga 2 O 3衬底(2),形成在其上的AIN缓冲层(3) Ga 2 O 3衬底(2)和形成在AIN缓冲层(3)上的氮化物半导体层(4)。
Abstract:
Verfahren zur Herstellung eines gehärteten, beschichteten Metallbauteils, mit folgenden Schritten: a. Durchführung einer Wärmebehandlung des Metallbauteils zur Anreicherung von Kohlenstoff und/oder Stickstoff in der Randschicht des Metallbauteils, b. Abschreckung des Metallbauteils auf eine Temperatur unterhalb der Martensit-Starttemperatur, c. Anlassen des Metallbauteils auf eine Temperatur, die höher ist als die Temperatur eines nachfolgend durchzuführenden Abscheideverfahrens zum Aufbringen einer Beschichtung, und Aufbringen einer Beschichtung mittels Gasphasenabscheidung.
Abstract:
The invention describes a method for the production of a coating (6) based on at least one material selected from a group consisting of silicon, germanium and the oxides SiOx or GeOx of these elements, said materials optionally being doped and in particular produced in an amorphous fashion, on at least one portion of a surface (3) of a metal substrate (2), the nitrogen content being optionally increased in the substrate (2) before the deposition of the coating (6), at least in the region of the portion of the surface. This portion of the surface is subjected to oxidation before deposition of the coating (6).
Abstract:
Die Erfindung beschreibt ein Verfahren zur Herstellung einer Beschichtung (6) auf Basis zumindest eines Werkstoffes ausgewählt aus einer Gruppe umfassend Silizium, Germanium, sowie die Oxide SiOx bzw. GeOx dieser Elemente, wobei diese gegebenenfalls dotiert werden, und insbesondere amorph hergestellt werden, auf zumindest einem Teilbereich einer Oberfläche (3) eines metallischen Trägers (2), wobei in dem Träger (2) gegebenenfalls vor der Abscheidung der Beschichtung (6) zumindest im Bereich des Teilbereichs der Gehalt an Stickstoff erhöht wird. Dieser Teilbereich wird vor Abscheidung der Beschichtung (6) einer Oxidation unterzogen.
Abstract:
Embodiments of the invention provide methods for forming a material on a substrate which includes exposing a plurality of substrates within a batch process chamber to a first oxidizing gas during a pretreatment process, exposing the substrates sequentially to a precursor and a second oxidizing gas during an ALD cycle and repeating the ALD cycle to form a material on the substrates. In one example, a hafnium precursor is used during the ALD process to form a hafnium-containing material, such as hafnium oxide. In another example, the first and second oxidizing gases are the same oxidizing gases. In another example, the first and second oxidizing gases are different oxidizing gases, such that the pretreatment process contains ozone and the ALD process contains water vapor.
Abstract:
Methods are provided herein for treating substrate surfaces in preparation for subsequent nucleation-sensitive depositions (e.g., polysilicon or poly-SiGe) and adsorption-driven deposition (e.g. atomic layer deposition or ALD). Prior to depositing, the surface is treated (110, 125) with non-depositing plasma products. The treated surface more readily nucleates polysilicon and poly-SiGe (such as for a gate electrode (220)), or more readily adsorbs ALD reactants (such as for a gate dielectric (260)). The surface treatment provides surface moieties more readily susceptible to a subsequent deposition reaction, or more readily susceptible to further surface treatment prior to deposition. By changing the surface termination of the substrate with a low temperature radical treatment, subsequent deposition is advantageously facilitated without depositing a layer of any appreciable thickness and without significantly affecting the bulk properties of the underlying material. Preferably less than 10 ANGSTROM of the bulk material incorporates the excited species, which can include fluorine, chlorine and particularly nitrogen excited species.
Abstract:
A method for chemical vapor deposition comprises providing a quantity of nitrogen at the interface between a transition metal-based material and an underlying dielectric-covered substrate. The nitrogen can be provided by heating the substrate in an atmosphere of a nitrogen-containing process gas or by exposing the surface of the dielectric-covered substrate to a plasma generated from a nitrogen-containing process gas. In certain embodiments, the nitrogen on the surface of the dielectric is bound with atoms of a transition metal to form a thin layer of a transition metal nitride. The method promotes the adhesion of the transition metal-based layer to the dielectric by nullifying the effect of halogen atoms that are also incorporated at the transition metal/dielectric interface.
Abstract:
The present invention relates to a component coated with a hard material, in particular diamond, for example a tool, to a process for its production and to a device for carrying out the process. In case of such a component the adhesion of the hard material layer often, in particular with fine-grained substrate materials, not satisfactory and it is an object of the invention to improve it. This is achieved by a process for the production of a component coated with a hard material, for example a tool, comprising the steps of: a) introducing a fine-grained cemented carbide or carbide-containing cermet substrate into a vacuum system with a heating device and at least one gas feed connection; b) removing carbon from the carbides of a surface layer of the substrate at a substrate temperature in the region of about 900 DEG C to about 1400 DEG C and in an oxygen-containing atmosphere; c) introducing carbon into the surface layer of the substrate at a substrate temperature in the region of about 900 DEG C to about 1400 DEG C and in a carbon-containing atmosphere; and d) coating the substrate with the hard material. The component itself as derived by this process and a device for carrying out the process are also subjects of the invention.