Abstract:
A two-dimensional heterostructure is synthesized by producing a patterned first two- dimensional material on a growth substrate. The first two-dimensional material is patterned to define at least one void through which an exposed region of the growth substrate is exposed. Seed molecules are selectively deposited either on the exposed region of the growth substrate or on the patterned first two-dimensional material. A second two-dimensional material that is distinct from the first two-dimensional material is then grown from the deposited seed molecules.
Abstract:
A multilayer composite structure and a method of preparing a multilayer composite structure are provided. The multilayer composite structure comprises a semiconductor handle substrate having a minimum bulk region resistivity of at least about 500 ohm-cm: a Group IVA nitride layer in contact with the semiconductor handle substrate, the Group IVA nitride layer selected from the group consisting of carbon nitride, silicon carbon nitride, and a combination thereof; a dielectric layer in contact with the Group IVA nitride layer; and a semiconductor device layer in contact with the dielectric layer.
Abstract:
To suppress a change in electrical characteristics and to improve reliability in a semiconductor device using a transistor including an oxide semiconductor. The semiconductor device includes a gate electrode over an insulating surface, an oxide semiconductor film overlapping with the gate electrode, a gate insulating film which is between the gate electrode and the oxide semiconductor film and is in contact with a surface of the oxide semiconductor film, a protective film in contact with an opposite surface of the surface of the oxide semiconductor film, and a pair of electrodes in contact with the oxide semiconductor film. In the gate insulating film or the protective film, the amount of gas having a mass-to-charge ratio m/z of 17 released by heat treatment is greater than the amount of nitrogen oxide released by heat treatment.
Abstract:
In an integrated circuit fabrication sequence, a relatively thick sacrificial layer (18) is deposited on a nonplanar surface of a device wafer in which high-resolution features are to be defined. The thick layer is characterized by a conforming lower surface and an essentially planar top surface and by the capability of being patterned in a high-resolution way. An intermediate masking layer (22) and then a thin resist layer (20) are deposited on the top surface of the sacrificial layer, the thickness of the resist layer being insufficient by itself to provide adequate step coverage if the resist layer were applied directly on the nonplanar surface. A high-resolution pattern defined in the resist layer is transferred into the intermediate masking layer. Subsequently, a dry processing technique is utilized to replicate the pattern in the sacrificial layer. A high-resolution pattern with near-vertical sidewalls is thereby produced in the sacrificial layer. By means of the patterned sacrificial layer, high-resolution features are then defined in the underlying nonplanar surface.
Abstract:
Some embodiments include a method in which a mixture of polynucleotide structures comprises a set of surface shapes. Surface shapes of some polynucleotide structures are complementary to surface shapes of other polynucleotide structures. The complementary surface shapes lock together along interfaces between adjacent polynucleotide structures to incorporate the polynucleotide structures into a polynucleotide mask. The polynucleotide mask is used during fabrication of features associated with a semiconductor substrate. Some embodiments include a method in which a semiconductor substrate comprises registration regions configured to adhere individual polynucleotide structures to specific locations of the semiconductor substrate. The adhered polynucleotide structures are incorporated into a polynucleotide mask which is used during fabrication of features associated with the semiconductor substrate.
Abstract:
A method of manufacturing a germanium-on-insulator substrate is disclosed. The method comprises: providing (102) a first semiconductor substrate, and a second semiconductor substrate formed with a germanium layer; bonding (102) the first semiconductor substrate to the second semiconductor substrate using at least one dielectric material to form a combined substrate, the germanium layer being arranged intermediate the first and second semiconductor substrates; removing (104) the second semiconductor substrate from the combined substrate to expose at least a portion of the germanium layer with misfit dislocations; and annealing (106) the combined substrate to enable removal of the misfit dislocations from the portion of the germanium layer.