Abstract:
A semiconductor package structure comprises a substrate, a die bonded to the substrate, and one or more stud bump structures connecting the die to the substrate, wherein each of the stud bump structures having a stud bump and a solder ball encapsulating the stud bump to enhance thermal dissipation and reduce high stress concentrations in the semiconductor package structure.
Abstract:
A method includes placing a first package component over a vacuum boat, wherein the vacuum boat comprises a hole, and wherein the first package component covers the hole. A second package component is placed over the first package component, wherein solder regions are disposed between the first and the second package components. The hole is vacuumed, wherein the first package component is pressed by a pressure against the vacuum boat, and wherein the pressure is generated by a vacuum in the hole. When the vacuum in the hole is maintained, the solder regions are reflowed to bond the second package component to the first package component.
Abstract:
A fine pitch package-on-package (PoP), and a method of forming, are provided. The PoP may be formed by placing connections, e.g., solder balls, on a first substrate having a semiconductor die attached thereto. A first reflow process is performed to elongate the solder balls. Thereafter, a second substrate having another semiconductor die attached thereto is connected to the solder balls. A second reflow process is performed to form an hourglass connection.
Abstract:
Processing defects arising during processing of a semiconductor wafer prior to back-grinding are reduced with systems and methods of sensor placement. One or more holes are bored into a chuck table for receiving semiconductor wafers, or a support table next to the chuck table. One or more sensors are disposed in the holes for monitoring parameters during a pre-back-grinding (PBG) process. A control box converts a set of signals received from the sensors. A computer-implemented process control tool receives the converted set of signals from the control box and determines whether the PBG process will continue.
Abstract:
A fine pitch package-on-package (PoP), and a method of forming, are provided. The PoP may be formed by placing connections, e.g., solder balls, on a first substrate having a semiconductor die attached thereto. A first reflow process is performed to elongate the solder balls. Thereafter, a second substrate having another semiconductor die attached thereto is connected to the solder balls. A second reflow process is performed to form an hourglass connection.
Abstract:
A method includes vacuum annealing on a substrate having at least one solder bump to reduce voids at an interface of the at least one solder bump. A die is mounted over the substrate.
Abstract:
The present invention provides a safety helmet inner lining adjustable for suitable wearing, consisting of: a covering body, which has an inner side surface that contacts a user's head and an outer side surface relative to the inner side surface; at least one interlayer pocket, which is disposed on the outer side surface of the covering body; and at least one cushiony pad, which is suitable for placement inside the interlayer pocket. A user is able to place the cushiony pads of suitable thickness into the interlayer pockets at preset positions according to the user's to head shape and dimensions. The inner lining is then put onto the head and a safety helmet put on top. The cushiony pads enable correcting the interspace between the user's head and the safety helmet, thereby allowing suitable and perfect fitting of the safety helmet that ensures safety of the wearer.
Abstract:
A method includes vacuum annealing on a substrate having at least one solder bump to reduce voids at an interface of the at least one solder bump. A die is mounted over the substrate.
Abstract:
A system and method for packaging semiconductor dies is provided. An embodiment comprises a first package with a first contact and a second contact. A post-contact material is formed on the first contact in order to adjust the height of a joint between the contact pad a conductive bump. In another embodiment a conductive pillar is utilized to control the height of the joint between the contact pad and external connections.
Abstract:
A method includes placing a first package component over a vacuum boat, wherein the vacuum boat comprises a hole, and wherein the first package component covers the hole. A second package component is placed over the first package component, wherein solder regions are disposed between the first and the second package components. The hole is vacuumed, wherein the first package component is pressed by a pressure against the vacuum boat, and wherein the pressure is generated by a vacuum in the hole. When the vacuum in the hole is maintained, the solder regions are reflowed to bond the second package component to the first package component.