摘要:
A superhydrophilic coating on a substrate can be antireflective and antifogging. The coating can remain antireflective and antifogging for extended periods. The coating can include oppositely charge inorganic nanoparticles, and can be substantially free of an organic polymer. The coating can be made mechanically robust by a hydrothermal calcination.
摘要:
A process for fabricating a structural color having ultraviolet reflectance is provided. The process includes providing an atomizing nozzle, a first nanoparticle solution and a second nanoparticle solution. The atomizing nozzle is used to spray a plurality of first nanoparticle solution layers, the plurality of first nanoparticle layers forming a low index of refraction stack. In some instances, a polymer solution can be sprayed before and/or after the spraying of each first nanoparticle solution layer. The atomizing nozzle is also used to spray a plurality of second nanoparticle solution layers, the plurality of second nanoparticle layers form a high index of refraction stack. Similar to the first nanoparticle solution layers, a polymer solution can be sprayed before and/or after the spraying of each second nanoparticle solution layer.
摘要:
A hydrophilic coating can be applied to virtually any surface to produce a long-lasting, durable antifog effect. The coating includes a molecular-level blend of hydrophilic polymers. The coating can be assembled using a layer-by-layer assembly process.
摘要:
A superhydrophilic thin film is formed on a metal surface of a boiler vessel to alter the wettability and roughness of the surface, which, in turn, changes the boiling behavior at the surface. The superhydrophilic film is formed by depositing a layer of a first ionic species on the surface from a solution. A second ionic species having a charge opposite to the that of the first ionic species is then deposited from solution onto the surface to produce a bilayer of the first ionic species and the oppositely charged second ionic species. The depositions are then repeated to form a plurality of bilayers, on top of the preceding bilayer. The bilayers are then heated, leaving the second ionic species on the metal surface to form a superhydrophilic film.
摘要:
A solid state light-emitting device having a high maximum luminance, a high external efficiency, and a low operating voltage is described. The device can include a solid layer, a first inert electrode, and a second inert electrode. The solid layer includes a metal complex and has a first surface and a second surface. The first inert electrode contacts the first surface of the solid layer. The second inert electrode contacts the second surface of the solid layer. The device can have a luminance of at least 50 cd/m2 at a potential of between 2.5 and 5.0 V.
摘要翻译:描述了具有高最大亮度,高外部效率和低工作电压的固态发光器件。 该装置可以包括固体层,第一惰性电极和第二惰性电极。 固体层包括金属络合物并具有第一表面和第二表面。 第一惰性电极接触固体层的第一表面。 第二惰性电极接触固体层的第二表面。 在2.5至5.0V之间的电位下,器件可以具有至少50cd / m 2的亮度。
摘要:
A thin-film heterostructure bilayer is formed on a substrate by a molecular self-assembly process based on the alternating deposition of a p-type doped electrically conductive polycationic polymer and a conjugated or nonconjugated polyanion or water soluble, non-ionic polymer has been developed. In this process, monolayers of electrically conductive polymers are spontaneously adsorbed onto a substrate from dilute solutions and subsequently built-up into multilayer thin films by alternating deposition with a soluble polyanion or water soluble, non-ionic polymer. In contrast to a deposition process involving the alternate self-assembly of polycations and polyanions, this process is driven by non-covalent bonded attractions (for example, ionic and hydrogen bonds) developed between a p-type doped conducting polymer and a polymer capable of forming strong secondary bonds. The net positive charge of the conducting polymer can be systematically adjusted by simply varying its doping level. Thus, with suitable choice of doping agent, doping level and solvent, it is possible to manipulate a wide variety of conducting polymers into uniform multilayer thin films with layer thicknesses ranging from a single monolayer to multiple layers.
摘要:
A superhydrophilic coating on a substrate can be antireflective and antifogging. The coating can remain antireflective and antifogging for extended periods. The coating can include oppositely charge inorganic nanoparticles, and can be substantially free of an organic polymer. The coating can be made mechanically robust by a hydrothermal calcination.
摘要:
A surface with superhydrophobic and hydrophilic or superhydrophilic regions can be made. The hydrophilic or superhydrophilic regions can selective collect water on the surface.
摘要:
A hydrophilic coating can be applied to virtually any surface to produce a long-lasting, durable antifog effect. The coating can be biocompatible. The coating includes a molecular-level blend of hydrophilic polymers. The coating can be assembled using a layer-by-layer assembly process.
摘要:
A method for selectively plating metal, such as copper, onto poly(phenylene sulfide) substrates is disclosed. In this method, a crystalline region and an amorphous region are created in a substrate. One method for creating these regions is to selectively crystallize a region in an amorphous poly(phenylene sulfide) substrate by heating it above its glass transition temperature. The surface of the substrate is then activated with an electroless plating catalyst such as palladium metal. After activation, a nitrosyl salt is introduced into the amorphous region of the substrate. The substrate is then immersed in an electroless plating solution containing the metal ions whereby metal selectively plates onto the crystalline region of the substrate.