Abstract:
An electronic component is disclosed, having a plurality of microelectronic spring contacts mounted to a planar face of the component. Each of the microelectronic spring contacts has a contoured beam, which may be formed of an integral layer of resilient material deposited over a contoured sacrificial substrate, and comprises a base mounted to the planar face of the component, a beam connected to the base at a first end of the beam, and a tip positioned at a free end of the beam opposite to the base. The beam has an unsupported span between its free end and its base. The microelectronic spring contacts are advantageously formed by depositing a resilient material over a molded, sacrificial substrate. The spring contacts may be provided with various innovative contoured shapes. In various embodiments of the invention, the electronic component comprises a semiconductor die, a semiconductor wafer, a LGA socket, an interposer, or a test head assembly.
Abstract:
A method for fabricating microelectronic spring structures is disclosed. In an initial step of the method, a layer of sacrificial material is formed over a substrate. Then, a contoured surface is developed in the sacrificial material, such as by molding the sacrificial material using a mold or stamp. The contoured surface provides a mold for at least one spring form, and preferably for an array of spring forms. If necessary, the sacrificial layer is then cured or hardened. A layer of spring material is deposited over the contoured surface of the sacrificial material, in a pattern to define at least one spring form, and preferably an array of spring forms. The sacrificial material is then at least partially removed from beneath the spring form to reveal at least one freestanding spring structure. A separate conducting tip is optionally attached to each resulting spring structure, and each structure is optionally plated or covered with an additional layer or layers of material, as desired. An alternative method for making a resilient contact structure using the properties of a fluid meniscus is additionally disclosed. In an initial step of the alternative method, a layer of material is provided over a substrate. Then, a recess is developed in the material, and fluid is provided in the recess to form a meniscus. The fluid is cured or hardened to stabilize the contoured shape of the meniscus. The stabilized meniscus is then used to define a spring form in the same manner as the molded surface in the sacrificial material.
Abstract:
Improved lithographic type microelectronic spring structures and methods are disclosed, for providing improved tip height over a substrate, an improved elastic range, increased strength and reliability, and increased spring rates. The improved structures are suitable for being formed from a single integrated layer (or series of layers) deposited over a molded sacrificial substrate, thus avoiding multiple stepped lithographic layers and reducing manufacturing costs. In particular, lithographic structures that are contoured in the z-direction are disclosed, for achieving the foregoing improvements. For example, structures having a U-shaped cross-section, a V-shaped cross-section, and/or one or more ribs running along a length of the spring are disclosed. The present invention additionally provides a lithographic type spring contact that is corrugated to increase its effective length and elastic range and to reduce its footprint over a substrate, and springs which are contoured in plan view. The present invention further provides combination (both series and parallel) electrical contacts tips for lithographic type microelectronic spring structures. The microelectronic spring structures according to the present invention are particularly useful for making very fine pitch arrays of electrical connectors for use with integrated circuits and other substrate-mounted electronic devices, because their performance characteristics are enhanced, while at the same time, they may be manufactured at greatly reduced costs compared to other lithographic type microelectronic spring structures.
Abstract:
A forming tool with one or more embossing tooth, and preferably, a plurality of such embossing teeth, arranged on a substantially planar substrate, is disclosed. Each embossing tooth is configured for forming a sacrificial layer to provide a contoured surface for forming a microelectronic spring structure. Each embossing tooth has a protruding area corresponding to a base of a microelectronic spring, and a sloped portion corresponding to a beam contour of a microelectronic spring. Numerous methods for making a forming tool are also disclosed. The methods include a material removal method, a molding method, a repetitive-stamping method, tang-bending methods, and segment-assembly methods.
Abstract:
An electronic component is disclosed, having a plurality of microelectronic spring contacts mounted to a planar face of the component. Each of the microelectronic spring contacts has a contoured beam, which may be formed of an integral layer of resilient material deposited over a contoured sacrificial substrate, and comprises a base mounted to the planar face of the component, a beam connected to the base at a first end of the beam, and a tip positioned at a free end of the beam opposite to the base. The beam has an unsupported span between its free end and its base. The microelectronic spring contacts are advantageously formed by depositing a resilient material over a molded, sacrificial substrate. The spring contacts may be provided with various innovative contoured shapes. In various embodiments of the invention, the electronic component comprises a semiconductor die, a semiconductor wafer, a LGA socket, an interposer, or a test head assembly.
Abstract:
A method of fabricating and using an interconnection element that includes a first element material adapted to be coupled to a substrate and a second element material comprising a material having a transformable property such that upon transformation, a shape of the interconnection is deformed. An example is a material that has a transformable property such that a volume of the first and/or second element material may undergo a thermal transformation from one volume to a different volume (such as a smaller volume) resulting in the deformation of the interconnection element.
Abstract:
An in-canal hearing device includes a receiver, battery, and microphone assembly with a housing. The housing has an air and sound opening which is covered with a structure to inhibit the entry of cerumen and moisture. The structure may be in the form of an end cap having passages with walls which are both hydrophobic and oleophobic to prevent the entry of water, cerumen and other liquids. The structure may also include a flexible tube or a rigid perforated shell surrounding the passages that inhibit the deposition of solid cerumen and other debris onto the passages.
Abstract:
In one example, the present invention is directed to a wound-healing patch including a flexible substrate, at least one wound electrode, at least one guard electrode and at least one return electrode. The guard electrode is positioned between the wound and return electrodes in the electrical path of current traveling between the return and wound electrodes on the surface of the skin, sinking the surface current and force the wound current to travel deeper into the tissue. In the invention, the wound electrode(s) is positioned on a portion of the flexible substrate designed to be placed over wounded tissue and the return electrode is positioned on a portion of the substrate substantially surrounding the wound and guard electrodes and is designed to be placed over healthy tissue.
Abstract:
The present invention is directed to small, low profile, antenna-transmitter systems that attach to exterior of the body and focus electromagnetic (EM) wave energy onto one or more precise regions inside the body. The antenna-transmitter system may also deliver energy to the surface of the body without focusing. The present invention is further directed to a method of focusing energy, such as electromagnetic radiation, onto a single nerve to effect selective neurostimulation, super- or sub-threshold, using a small, low profile, antenna-transmitter system that attaches to the body exterior and focuses electromagnetic wave energy onto the nerve.
Abstract:
Hearing devices configured to fit within the bony portion of the ear canal and batteries that may be used with same. Such hearing devices may have a hearing device core, which includes a battery and an acoustic assembly with a microphone and receiver positioned such that the lateral end of the receiver substantially abuts the medial end of the microphone, and a seal apparatus on the hearing device core.