Abstract:
Improved lithographic type microelectronic spring structures and methods are disclosed, for providing improved tip height over a substrate, an improved elastic range, increased strength and reliability, and increased spring rates. The improved structures are suitable for being formed from a single integrated layer (or series of layers) deposited over a molded sacrificial substrate, thus avoiding multiple stepped lithographic layers and reducing manufacturing costs. In particular, lithographic structures that are contoured in the z-direction are disclosed, for achieving the foregoing improvements. For example, structures having a U-shaped cross-section, a V-shaped cross-section, and/or one or more ribs running along a length of the spring are disclosed. The present invention additionally provides a lithographic type spring contact that is corrugated to increase its effective length and elastic range and to reduce its footprint over a substrate, and springs which are contoured in plan view. The present invention further provides combination (both series and parallel) electrical contacts tips for lithographic type microelectronic spring structures. The microelectronic spring structures according to the present invention are particularly useful for making very fine pitch arrays of electrical connectors for use with integrated circuits and other substrate-mounted electronic devices, because their performance characteristics are enhanced, while at the same time, they may be manufactured at greatly reduced costs compared to other lithographic type microelectronic spring structures.
Abstract:
A forming tool with one or more embossing tooth, and preferably, a plurality of such embossing teeth, arranged on a substantially planar substrate, is disclosed. Each embossing tooth is configured for forming a sacrificial layer to provide a contoured surface for forming a microelectronic spring structure. Each embossing tooth has a protruding area corresponding to a base of a microelectronic spring, and a sloped portion corresponding to a beam contour of a microelectronic spring. Numerous methods for making a forming tool are also disclosed. The methods include a material removal method, a molding method, a repetitive-stamping method, tang-bending methods, and segment-assembly methods.
Abstract:
An electronic component is disclosed, having a plurality of microelectronic spring contacts mounted to a planar face of the component. Each of the microelectronic spring contacts has a contoured beam, which may be formed of an integral layer of resilient material deposited over a contoured sacrificial substrate, and comprises a base mounted to the planar face of the component, a beam connected to the base at a first end of the beam, and a tip positioned at a free end of the beam opposite to the base. The beam has an unsupported span between its free end and its base. The microelectronic spring contacts are advantageously formed by depositing a resilient material over a molded, sacrificial substrate. The spring contacts may be provided with various innovative contoured shapes. In various embodiments of the invention, the electronic component comprises a semiconductor die, a semiconductor wafer, a LGA socket, an interposer, or a test head assembly.
Abstract:
A method of fabricating and using an interconnection element that includes a first element material adapted to be coupled to a substrate and a second element material comprising a material having a transformable property such that upon transformation, a shape of the interconnection is deformed. An example is a material that has a transformable property such that a volume of the first and/or second element material may undergo a thermal transformation from one volume to a different volume (such as a smaller volume) resulting in the deformation of the interconnection element.
Abstract:
A method for fabricating microelectronic spring structures is disclosed. In an initial step of the method, a layer of sacrificial material is formed over a substrate. Then, a contoured surface is developed in the sacrificial material, such as by molding the sacrificial material using a mold or stamp. The contoured surface provides a mold for at least one spring form, and preferably for an array of spring forms. If necessary, the sacrificial layer is then cured or hardened. A layer of spring material is deposited over the contoured surface of the sacrificial material, in a pattern to define at least one spring form, and preferably an array of spring forms. The sacrificial material is then at least partially removed from beneath the spring form to reveal at least one freestanding spring structure. A separate conducting tip is optionally attached to each resulting spring structure, and each structure is optionally plated or covered with an additional layer or layers of material, as desired. An alternative method for making a resilient contact structure using the properties of a fluid meniscus is additionally disclosed. In an initial step of the alternative method, a layer of material is provided over a substrate. Then, a recess is developed in the material, and fluid is provided in the recess to form a meniscus. The fluid is cured or hardened to stabilize the contoured shape of the meniscus. The stabilized meniscus is then used to define a spring form in the same manner as the molded surface in the sacrificial material.
Abstract:
An electronic component is disclosed, having a plurality of microelectronic spring contacts mounted to a planar face of the component. Each of the microelectronic spring contacts has a contoured beam, which may be formed of an integral layer of resilient material deposited over a contoured sacrificial substrate, and comprises a base mounted to the planar face of the component, a beam connected to the base at a first end of the beam, and a tip positioned at a free end of the beam opposite to the base. The beam has an unsupported span between its free end and its base. The microelectronic spring contacts are advantageously formed by depositing a resilient material over a molded, sacrificial substrate. The spring contacts may be provided with various innovative contoured shapes. In various embodiments of the invention, the electronic component comprises a semiconductor die, a semiconductor wafer, a LGA socket, an interposer, or a test head assembly.
Abstract:
A probe card assembly can include a probe head assembly having probes for contacting an electronic device to be tested. The probe head assembly can be electrically connected to a wiring substrate and mechanically attached to a stiffener plate. The wiring substrate can provide electrical connections to a testing apparatus, and the stiffener plate can provide structure for attaching the probe card assembly to the testing apparatus. The stiffener plate can have a greater mechanical strength than the wiring substrate and can be less susceptible to thermally induced movement than the wiring substrate. The wiring substrate may be attached to the stiffener plate at a central location of the wiring substrate. Space may be provided at other locations where the wiring substrate is attached to the stiffener plate so that the wiring substrate can expand and contract with respect to the stiffener plate.
Abstract:
An electrical interconnect assembly and methods for making an electrical interconnect assembly. In one embodiment, an interconnect assembly includes a flexible wiring layer having a plurality of first contact elements and a fluid containing structure which is coupled to the flexible wiring layer. The fluid, when contained in the fluid containing structure, presses the flexible wiring layer towards a device under test to form electrical interconnections between the first contact elements and corresponding second contact elements on the device under test. In a further embodiment, an interconnect assembly includes a flexible wiring layer having a plurality of first contact terminals and a semiconductor substrate which includes a plurality of second contact terminals. A plurality of freestanding, resilient contact elements, in one embodiment, are mechanically coupled to one of the flexible wiring layers or the semiconductor substrate and make electrical contacts between corresponding ones of the first contact terminals and the second contact terminals. In another embodiment, a method of making electrical interconnections includes joining a flexible wiring layer and a substrate together in proximity and causing a pressure differential between a first side and a second side of the flexible wiring layer. The pressure differential deforms the flexible wiring layer and causes a plurality of first contact terminals on the flexible wiring layer to electrically connect with a corresponding plurality of second contact terminals on the substrate.
Abstract:
One or more testers wirelessly communicate with one or more test stations. The wireless communication may include transmission of test commands and/or test vectors to a test station, resulting in testing of one or more electronic devices at the test station. The wireless communication may also include transmission of test results to a tester. Messages may also be wirelessly exchanged.
Abstract:
Systems and methods for providing a stack with a guard plane embedded in the stack are disclosed. An electrical apparatus can be made by forming a stack comprising an electrically conductive signal structure, an electrical guard structure, and an electrically insulating structure disposed between the signal structure and the guard structure. The signal structure, insulating structure, and guard structure can be aligned one with another in the stack.