Abstract:
Systems and methods described herein may relate to data transactions involving a microsector architecture. Control circuitry may organize transactions to and from the microsector architecture to, for example, enable direct addressing transactions as well as batch transactions across multiple microsectors. A data path disposed between programmable logic circuitry of a column of microsectors and a column of row controllers may form a micro-network-on-chip used by a network-on-chip to interface with the programmable logic circuitry.
Abstract:
A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
Abstract:
Systems and methods described herein may relate to data transactions involving a microsector architecture. Control circuitry may organize transactions to and from the microsector architecture to, for example, enable direct addressing transactions as well as batch transactions across multiple microsectors. A data path disposed between programmable logic circuitry of a column of microsectors and a column of row controllers may form a micro-network-on-chip used by a network-on-chip to interface with the programmable logic circuitry.
Abstract:
An integrated circuit includes a core region of logic circuits and a network routed outside the core region. The network includes a wide layer and a narrow layer. The wide layer comprises first routers coupled in series. The narrow layer comprises second routers coupled in series.
Abstract:
A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
Abstract:
Methods, systems, apparatus, and articles of manufacture to crimp a tube are disclosed. An example crimp disclosed herein includes a first crimp section extending between a first end of the crimp and a point along the crimp between the first end and a second end, a first inner diameter of the first crimp section constant between the first end and the point, and a second crimp section adjacent the first crimp section, the second crimp section extending between the point and the second end, a second inner diameter of the second crimp section to increase from the point to the second end.
Abstract:
A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state
Abstract:
An apparatus to test a semiconductive device includes a base plane that holds at least one heat-transfer fluid unit cell. The at least one heat-transfer fluid unit cell includes a fluid supply structure including a supply-orifice cross section as well as a fluid return structure including a return-orifice cross section. The supply-orifice cross section is greater than the return-orifice cross section. A die interface is also included to be a liquid-impermeable material.
Abstract:
A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
Abstract:
A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.