Abstract:
A semiconductor device includes: a pad electrode 9a formed in an uppermost layer of a plurality of wiring layers; a base insulating film 11 having an opening 11a on the pad electrode 9a; a base metal film UM formed on the base insulating film 11; a redistribution line RM formed on the base metal film UM; and a cap metal film CM formed so as to cover an upper surface and a side surface of the redistribution line RM. In addition, in a region outside the redistribution line RM, the base metal film UM made of a material different from that of the redistribution line RM and the cap metal film CM made of a material different from the redistribution line RM are formed between the cap metal film CM formed on the side surface of the redistribution line RM and the base insulating film 11, and the base metal film UM and the cap metal film CM are in direct contact with each other in the region outside the redistribution line RM.
Abstract:
Performance of a semiconductor device is improved. In one embodiment, for example, deposition time is increased from 4.6 sec to 6.9 sec. In other words, in one embodiment, thickness of a tantalum nitride film is increased by increasing the deposition time. Specifically, in one embodiment, deposition time is increased such that a tantalum nitride film provided on the bottom of a connection hole to be coupled to a wide interconnection has a thickness within a range from 5 to 10 nm.
Abstract:
Performance of a semiconductor device is improved. In one embodiment, for example, deposition time is increased from 4.6 sec to 6.9 sec. In other words, in one embodiment, thickness of a tantalum nitride film is increased by increasing the deposition time. Specifically, in one embodiment, deposition time is increased such that a tantalum nitride film provided on the bottom of a connection hole to be coupled to a wide interconnection has a thickness within a range from 5 to 10 nm.
Abstract:
Disclosed is a manufacturing method of a semiconductor device including a step of attaching semiconductor wafers together, in which it is prevented that the bonding strength between the attached semiconductor wafers may be decreased due to a void caused between the two semiconductor wafers. Moisture, etc., adsorbed to the surfaces of the semiconductor wafers is desorbed by performing a heat treatment on the semiconductor wafers after cleaning the surfaces thereof with pure water. Subsequently, after a plasma treatment is performed on the semiconductor wafers, the two semiconductor wafers are attached together. The wafers are firmly bonded together by subjecting to a high-temperature heat treatment.
Abstract:
Performance of a semiconductor device is improved. In one embodiment, for example, deposition time is increased from 4.6 sec to 6.9 sec. In other words, in one embodiment, thickness of a tantalum nitride film is increased by increasing the deposition time. Specifically, in one embodiment, deposition time is increased such that a tantalum nitride film provided on the bottom of a connection hole to be coupled to a wide interconnection has a thickness within a range from 5 to 10 nm.
Abstract:
A solid-state imaging element has problems of occurrence of dark current due to influences of an interface state at an interface between a semiconductor and an insulating film, e.g., between silicon and silicon oxide, and of charges generated in a device manufacturing process, which leads to signal noise, thereby degrading the function of a device, specifically, the imaging quality. The outline of the invention in the present application relates to a manufacturing method of a semiconductor integrated circuit device with a surface-irradiation type image sensor, which includes irradiating a main surface of a semiconductor wafer with photodiodes formed therein, with far-ultraviolet ray after forming a lowermost wiring layer of a multi-layer wiring and before forming a color filter layer, and then applying a heat treatment to the wafer.
Abstract:
Performance of a semiconductor device is improved. In one embodiment, for example, deposition time is increased from 4.6 sec to 6.9 sec. In other words, in one embodiment, thickness of a tantalum nitride film is increased by increasing the deposition time. Specifically, in one embodiment, deposition time is increased such that a tantalum nitride film provided on the bottom of a connection hole to be coupled to a wide interconnection has a thickness within a range from 5 to 10 nm.
Abstract:
The present invention makes it possible to improve the reliability of a semiconductor device. The semiconductor device has, over a semiconductor substrate, a pad electrode formed at the uppermost layer of a plurality of wiring layers, a surface protective film having an opening over the pad electrode, a redistribution line being formed over the surface protective film and having an upper surface and a side surface, a sidewall barrier film comprising an insulating film covering the side surface and exposing the upper surface of the redistribution line, and a cap metallic film covering the upper surface of the redistribution line. Then the upper surface and side surface of the redistribution line are covered with the cap metallic film or the sidewall barrier film and the cap metallic film and the sidewall barrier film have an overlapping section.
Abstract:
Disclosed is a manufacturing method of a semiconductor device including a step of attaching semiconductor wafers together, in which it is prevented that the bonding strength between the attached semiconductor wafers may be decreased due to a void caused between the two semiconductor wafers. Moisture, etc., adsorbed to the surfaces of the semiconductor wafers is desorbed by performing a heat treatment on the semiconductor wafers after cleaning the surfaces thereof with pure water. Subsequently, after a plasma treatment is performed on the semiconductor wafers, the two semiconductor wafers are attached together. The wafers are firmly bonded together by subjecting to a high-temperature heat treatment.
Abstract:
A semiconductor device includes an insulating layer, a first conductive film, a second conductive film and a thin-film resistor. The insulating layer has a penetrating portion. The first conductive film is formed in the penetrating portion such that a recess is formed at an upper part of the penetration portion. The second conductive film is formed on an upper surface of the first conductive film and an inner surface of the penetrating portion. The thin-film resistor includes silicon and metal. The thin-film resistor is formed on the second conductive film and the insulating layer.