Abstract:
A device includes an optical isolator disposed between adjacent optical waveguides along a direction. The optical isolator has vertical or horizontal dimensions that are different than at least one of the optical waveguides. The vertical and horizontal dimensions are greater than vertical and horizontal dimensions of at least one of the waveguides. In various embodiments, the structure of the optical isolator can be a planar structure, a columnar periodic structure, or a grating structure. The material of the optical isolator can be a metallic material or a dielectric material. In some embodiments, the optical isolator and the optical waveguides are used to enhance the performance of an optical multiplexing device.
Abstract:
An interconnect structure includes a first conductor, a second conductor, a dielectric block, a substrate, and a pair of conductive lines. The first conductor and the second conductor form a differential pair design. The dielectric block surrounds the first conductor and the second conductor. The first conductor is separated from the second conductor by the dielectric block. The substrate surrounds the dielectric block and is spaced apart from the first conductor and the second conductor. The pair of conductive lines is connected to the first conductor and the second conductor, respectively, and extends along a top surface of the dielectric block and a top surface of the substrate.
Abstract:
In an embodiment, a phase shifter includes: a light input end; a light output end; a p-type semiconductor material, and an n-type semiconductor material contacting the p-type semiconductor material along a boundary area, wherein the boundary area is greater than a length from the light input end to the light output end multiplied by a core width of the phase shifter.
Abstract:
An interconnect structure includes a substrate, a dielectric block, and a conductor. The dielectric block is in the substrate. A dielectric constant of the dielectric block is smaller than a dielectric constant of the substrate, and the dielectric block and the substrate have substantially the same thickness. The conductor includes a first portion extending from a top surface to a bottom surface of the dielectric block and a second portion extending along and contacting the top surface of the dielectric block.
Abstract:
A circuit and a method are disclosed herein. The circuit includes a digitally controlled oscillator and a detector. The digitally controlled oscillator is configured to generate an oscillator signal according to an oscillator tuning word. The detector is configured to output one of a first control word and a second control word that is derived from the first control word as the oscillator tuning word.
Abstract:
The three dimensional (3D) circuit includes a first tier including a semiconductor substrate, a second tier disposed adjacent to the first tier, a three dimensional inductor including an inductive element portion, the inductive element portion including a conductive via extending from the first tier to a dielectric layer of the second tier. The 3D circuit includes a ground shield surrounding at least a portion of the conductive via. In some embodiments, the ground shield includes a hollow cylindrical cage. In some embodiments, the 3D circuit is a low noise amplifier.
Abstract:
A phase-locked loop circuit, a phase converter module thereof and a phase-locked controlling method are disclosed herein. The phase converter module is suitable for a phase-locked loop circuit including a digitally-controlled oscillator (DCO) for generating an oscillator output signal and a divider for converting the oscillator output signal into N-phased oscillator output signals. The phase converter module includes a period extender, a phase finder and a time-to-digital converter. The period extender is configured for extending the N-phased oscillator output signals into M*N-phased oscillator output signals corresponding to M oscillation period of the digitally-controlled oscillator. The phase finder is configured for sampling the oscillator output signal with the M*N-phased oscillator output signals to calculate an estimated value of the fractional phase part. The time-to-digital converter is configured to calculate a precise value of the fractional phase part within one sub-period.
Abstract:
Apparatus, circuits and methods for reducing mismatch in an electro-optic modulator are described herein. In some embodiments, a described optical includes: a splitter configured for splitting an input optical signal into a first optical signal and a second optical signal; a phase shifter coupled to the splitter; and a combiner coupled to the phase shifter. The phase shifter includes: a first waveguide arm configured for controlling a first phase of the first optical signal to generate a first phase-controlled optical signal, and a second waveguide arm configured for controlling a second phase of the second optical signal to generate a second phase-controlled optical signal. Each of the first and second waveguide arms includes: a plurality of straight segments and a plurality of curved segments. The combiner is configured for combining the first and second phase-controlled optical signals to generate an output optical signal.
Abstract:
In an embodiment, a phase shifter includes: a light input end; a light output end; a p-type semiconductor material, and an n-type semiconductor material contacting the p-type semiconductor material along a boundary area, wherein the boundary area is greater than a length from the light input end to the light output end multiplied by a core width of the phase shifter.
Abstract:
An interconnect structure includes a dielectric block, a first conductive plug, a second conductive plug, a substrate, a first conductive line, and a second conductive line. The first conductive plug and the second conductive plug are surrounded by the dielectric block. The substrate surrounds the dielectric block. The first conductive line is connected to the first conductive plug and is in contact with a top surface of the dielectric block. The second conductive line is connected to the second conductive plug.