Abstract:
An adhesive film composition includes an elastomer resin having one or more of a hydroxy group, a carboxyl group, or an epoxy group, a film-forming resin, a silylated phenolic curing resin, an epoxy resin, a curing accelerator, and a filler.
Abstract:
There are provided a micro-ejector and a method of manufacturing the same. The micro-ejector includes an upper substrate including an inlet into which a fluid is drawn from the outside and a chamber groove; a lower substrate including a reservoir groove to provide a reservoir storing the fluid drawn through the inlet; a piezoelectric actuator formed on the upper substrate and supplying a driving force for fluid ejection to a chamber; and at least one support protruding from a bottom of the reservoir groove so as to support the upper substrate.
Abstract:
A method of manufacturing an ink-jet head is disclosed. The method in accordance with an embodiment of the present invention includes: forming a dividing groove such that one surface of a piezoelectric element is divided corresponding to the position of the chamber; filling the dividing groove with a filler; bonding one surface of the piezoelectric element to one surface of the ink-jet head in which the chamber is formed; and polishing the other surface of the piezoelectric element such that the filler is exposed.
Abstract:
In a method of manufacturing a semiconductor device, a first etching mask and a second etching mask are formed sequentially on a metal gate structure on a substrate and a first insulating interlayer covering a sidewall of the metal gate structure respectively. An opening is formed to expose a top surface of the substrate by removing a portion of the first insulating interlayer not overlapped with the first etching mask or the second etching mask. A metal silicide pattern is formed on the exposed top surface of the substrate. A plug on the metal silicide pattern is formed to fill a remaining portion of the opening. Further, a planarization layer may be used as the second etching mask.
Abstract:
Provided is a method of manufacturing a ceramic probe card. A ceramic laminated body having a plurality of ceramic green sheets and an interlayer circuit including a conductive via and a conductive line formed in the plurality of ceramic green sheets is prepared. Then, at least one probe pin structure connected to the interlayer circuit is formed by selectively removing the plurality of photosensitive ceramic sheets having a ceramic powder and a photosensitive organic component on the ceramic laminated body necessarily, and by filling a metal material in a region from which the plurality of photosensitive ceramic sheets have been removed. Then, a ceramic substrate having the at least one probe pin structure is provided by simultaneously firing the ceramic laminated body and the photosensitive ceramic sheets, and by removing the photosensitive ceramic sheets.
Abstract:
There are provided an inkjet head actuator and a manufacturing method of the same. The inkjet head actuator includes: a vibration plate having a recess formed in a top surface thereof; a first electrode formed to cover a bottom surface and a side wall of the recess; a piezoelectric body formed on the first electrode to fill the recess; and a second electrode formed on the piezoelectric body. The inkjet head actuator having the thin film piezoelectric body and the vibration plate ensures large vibration displacement.
Abstract:
There is provided a micro-ejector. The micro-ejector according to an exemplary embodiment of the present invention may include an ejection device including a passage for ejecting fluid contained therein, and a piezoelectric actuator providing a driving force for ejecting fluid, a mounting plate including a passage for providing fluid to the ejection device formed therein, and a mounting groove on which the ejection device is mounted, and a connection member formed on the mounting plate, and adopted for connecting the piezoelectric actuator to an external power source.
Abstract:
A cell chip is provided which includes a first substrate having a micro channel extending from an upper surface thereof to a lower surface or a side surface thereof, and a first bio matrix arranged on the upper surface of the first substrate to cover the micro channel while containing cells. The cell chip supplies fluid to cells contained in the bio matrix by means of perfusion and diffusion, thereby providing an environment similar to a biological environment.
Abstract:
A negative active material of a non-aqueous electrolyte battery includes a compound represented by formula 1: LixMyVzO2+d (1) where 0.1≦x≦2.5, 0
Abstract:
A method for fabricating a thin film device includes the step of forming a sacrificial layer on a first substrate. A portion other than a region of the sacrificial layer is selectively removed. A material film is formed on the sacrificial layer to be connected to the first substrate via the selectively removed region. The material film portion filled in the selectively removed region is provided as an anchor. A thin film lamination is formed on the material film. The desired thin film device is formed by using a selective etching process. After removing the sacrificial layer, the thin film device floats over the first substrate with being supported by the anchor. A support body is temporarily attached on the thin film lamination. The thin film device is transferred to the support body onto a second substrate.