摘要:
An interconnect structure in which the adhesion between an upper level low-k dielectric material, such as a material comprising elements of Si, C, O, and H, and an underlying diffusion capping dielectric, such as a material comprising elements of C, Si, N and H, is improved by incorporating an adhesion transition layer between the two dielectric layers. The presence of the adhesion transition layer between the upper level low-k dielectric and the diffusion barrier capping dielectric can reduce the chance of delamination of the interconnect structure during the packaging process. The adhesion transition layer provided herein includes a lower SiOx- or SiON-containing region and an upper C graded region. Methods of forming such a structure, in particularly the adhesion transition layer, are also provided.
摘要翻译:一种互连结构,其中上层低k介电材料(例如包含Si,C,O和H的元素的材料)与下面的扩散覆盖电介质(例如包含C,Si元素的材料)之间的粘合 通过在两个电介质层之间引入粘附过渡层来改善N和H。 在上层低k电介质和扩散阻挡覆盖电介质之间的粘附过渡层的存在可以减少在包装过程中互连结构的分层的可能性。 本文提供的粘合过渡层包括含低级SiO x - 或SiON的区域和上C级分区域。 还提供了形成这种结构,特别是粘附过渡层的方法。
摘要:
A magnetic domain wall memory apparatus with write/read capability includes a plurality of coplanar shift register structures each comprising an elongated track formed from a ferromagnetic material having a plurality of magnetic domains therein, the shift register structures further having a plurality of discontinuities therein to facilitate domain wall location; a magnetic read element associated with each of the shift register structures; and a magnetic write element associated with each of the shift register structures, the magnetic write element further comprising a single write wire having a longitudinal axis substantially orthogonal to a longitudinal axis of each of the coplanar shift register structures.
摘要:
An interconnect structure in which the adhesion between an upper level low-k dielectric material, such as a material comprising elements of Si, C, O, and H, and an underlying diffusion capping dielectric, such as a material comprising elements of C, Si, N and H, is improved by incorporating an adhesion transition layer between the two dielectric layers. The presence of the adhesion transition layer between the upper level low-k dielectric and the diffusion barrier capping dielectric can reduce the chance of delamination of the interconnect structure during the packaging process. The adhesion transition layer provided herein includes a lower SiOx- or SiON-containing region and an upper C graded region. Methods of forming such a structure, in particularly the adhesion transition layer, are also provided.
摘要翻译:一种互连结构,其中上层低k介电材料(例如包含Si,C,O和H的元素的材料)与下面的扩散覆盖电介质(例如包含C,Si元素的材料)之间的粘合 通过在两个电介质层之间引入粘附过渡层来改善N和H。 在上层低k电介质和扩散阻挡覆盖电介质之间的粘附过渡层的存在可以减少在包装过程中互连结构的分层的可能性。 本文提供的粘合过渡层包括含低级SiO x - 或SiON的区域和上C级分区域。 还提供了形成这种结构,特别是粘附过渡层的方法。
摘要:
A method for manufacturing a circuit includes the step of providing a first wiring level comprising first wiring level conductors separated by a first wiring level dielectric material. A first dielectric layer with a plurality of inter connect openings and a plurality of gap openings is formed above the first wiring level. The interconnect openings and the gap openings are pinched off with a pinching dielectric material to form relatively low dielectric constant (low-k) volumes in the gap openings. Metallic conductors comprising second wiring level conductors and interconnects to the first wiring level conductors are formed at the interconnect openings while maintaining the relatively low-k volumes in the gap openings. The gap openings with the relatively low-k volumes reduce parasitic capacitance between adjacent conductor structures formed by the conductors and interconnects.
摘要:
A method (and structure) of forming an interconnect on a semiconductor substrate, includes forming a relatively narrow first structure in a dielectric formed on a semiconductor substrate, forming a relatively wider second structure in the dielectric formed on the semiconductor substrate, forming a liner in the first and second structures such that the first structure is substantially filled and the second structure is substantially unfilled, and forming a metallization over the liner to completely fill the second structure.
摘要:
An N-channel metal oxide semiconductor (NMOS) driver circuit (and method for making the same), includes a boost gate stack formed on a substrate and having a source and drain formed by a low concentration implantation, and an N-driver coupled to the boost gate stack.
摘要:
A semiconductor device and a method for forming the semiconductor device, include forming a mandrel, forming spacer wordline conductors on sidewalls of the mandrel, separating, by using a trim mask, adjacent spacer wordline conductors, and providing a contact area to contact alternating ones of pairs of the spacer wordline conductors.
摘要:
A method and structure to form a conductive pattern on a ceramic sheet deposits a photosensitive conductive material on a carrier and exposes a pattern of x-ray energy on the material and sinters the carrier and the material to the ceramic sheet so that only the conductive pattern of the material remains on the ceramic sheet. The structure has a conductive patterned material which includes a photosensitive agent.
摘要:
A chip packaging system and method for providing enhanced thermal cooling including a first embodiment wherein a diamond thin film is used to replace at least the surface layer of the existing packaging material in order to form a highly heat conductive path to an associated heat sink. An alternative embodiment provides diamond thin film layers disposed on adjacent surfaces of the chip and the chip package. Yet another alternative embodiment includes diamond thin film layers on adjacent chip surfaces in a chip-to-chip packaging structure. A final illustrated embodiment provides for the use of an increased number of solder balls disposed in at least one diamond thin film layer on at least one of a chip and a chip package joined with standard C4 technology.
摘要:
A method and a device directed to the same, for stabilizing cobalt di-silicide/single crystal silicon, amorphous silicon, polycrystalline silicon, germanide/crystalline germanium, polycrystalline germanium structures or other semiconductor material structures so that high temperature processing steps (above 750.degree. C.) do not degrade the structural quality of the cobalt di-silicide/silicon structure. The steps of the method include forming a di-silicide or germanide by either reacting cobalt with the substrate material and/or the codeposition of the di-silicide or germanide on a substrate, adding a selective element, either platinum or nitrogen, into the cobalt and forming the di-silicide or germanide by a standard annealing treatment. Alternatively, the cobalt di-silicide or cobalt germanide can be formed after the formation of the di-silicide or germanide respectively. As a result, the upper limit of the annealing temperature at which the di-silicide or germanide will structurally degrade is increased.