摘要:
A method and a device directed to the same, for stabilizing cobalt di-silicide/single crystal silicon, amorphous silicon, polycrystalline silicon, germanide/crystalline germanium, polycrystalline germanium structures or other semiconductor material structures so that high temperature processing steps (above 750.degree. C.) do not degrade the structural quality of the cobalt di-silicide/silicon structure. The steps of the method include forming a di-silicide or germanide by either reacting cobalt with the substrate material and/or the codeposition of the di-silicide or germanide on a substrate, adding a selective element, either platinum or nitrogen, into the cobalt and forming the di-silicide or germanide by a standard annealing treatment. Alternatively, the cobalt di-silicide or cobalt germanide can be formed after the formation of the di-silicide or germanide respectively. As a result, the upper limit of the annealing temperature at which the di-silicide or germanide will structurally degrade is increased.
摘要:
A method and a device directed to the same, for stabilizing cobalt silicide/single crystal silicon, amorphous silicon, polycrystalline silicon, germanide/crystalline germanium, polycrystalline germanium structures or other semiconductor material structures so that high temperature processing steps (above 750.degree. C.) do not degrade the structural quality of the cobalt silicide/silicon structure. The steps of the method include forming a silicide or germanide by either reacting cobalt with the substrate material and/or the codeposition of the silicide or germanide on a substrate, adding a selective element, either platinum or nitrogen, into the cobalt and forming the silicide germanide by a standard annealing treatment. Alternatively, the cobalt silicide or cobalt germanide can be formed after the formation of the silicide or germanide respectively. As a result, the upper limit of the annealing temperature at which the silicide or germanide will structurally degrade is increased.
摘要:
A multilayer structure having an oxygen or dopant diffusion barrier fabricated of an electrically conductive, thermally stable material of refractory metal-silicon-nitrogen which is resistant to oxidation, prevents out-diffusion of dopants from silicon and has a wide process window wherein the refractory metal is selected from Ta, W, Nb, V, Ti, Zr, Hf, Cr and Mo.
摘要:
A method of forming a salicide on a semiconductor device includes depositing a first refractory metal layer over a silicon region of a substrate, depositing a near-noble metal layer over the first refractory metal layer, and depositing a second refractory metal layer over the near-noble metal layer. The semiconductor device is annealed in a first annealing process to form a silicide layer abutting the doped region of the semiconductor device. Un-reacted portions of the near-noble metal layer and the second refractory metal layer are removed. The device may be annealed in an optional second annealing process to convert the silicide layer to a low resistance phase silicide material. Junction leakage and bridging are minimized or eliminated by embodiments of the present invention, and a smoother silicided surface is achieved.
摘要:
Thermal mixing methods of forming a substantially relaxed and low-defect SGOI substrate material are provided. The methods include a patterning step which is used to form a structure containing at least SiGe islands formed atop a Ge resistant diffusion barrier layer. Patterning of the SiGe layer into islands changes the local forces acting at each of the island edges in such a way so that the relaxation force is greater than the forces that oppose relaxation. The absence of restoring forces at the edges of the patterned layers allows the final SiGe film to relax further than it would if the film was continuous.
摘要:
A method and structure for a CMOS device comprises depositing a silicon over insulator (SOI) wafer over a buried oxide (BOX) substrate, wherein the SOI wafer has a predetermined thickness; forming a gate dielectric over the SOI wafer, forming a shallow trench isolation (STI) region over the BOX substrate, wherein the STI region is configured to have a generally rounded corner; forming a gate structure over the gate dielectric; depositing an implant layer over the SOI wafer; performing one of N-type and P-type dopant implantations in the SOI wafer and the implant layer; and hearing the device to form source and drain regions from the implant layer and the SOI wafer, wherein the source and drain regions have a thickness greater than the predetermined thickness of the SOI wafer, wherein the gate dielectric is positioned lower than the STI region.
摘要:
A field effect transistor is formed with a sub-lithographic conduction channel and a dual gate which is formed by a simple process by starting with a silicon-on-insulator wafer, allowing most etching processes to use the buried oxide as an etch stop. Low resistivity of the gate, source and drain is achieved by silicide sidewalls or liners while low gate to junction capacitance is achieved by recessing the silicide and polysilicon dual gate structure from the source and drain region edges.
摘要:
A method of maintaining an optimum pressure and purity level in a vessel having an inlet gas flow and an outlet gas flow during shutdown of the vessel that prevents imploding of the vessel when the inlet and outlet gas flows are discontinued. Gas from the vessel is directed to a containment portion in communication with the vessel. The pressure of the gas in the containment portion is monitored; the containment portion is backfilled with a purified inert gas when the monitored pressure drops to a predetermined lower level; and the containment portion is vented when the monitored pressure rises to a predetermined higher level. Apparatus for maintaining an optimum pressure and purity level in a vessel having an inlet gas flow and an outlet gas flow during shutdown of the vessel that prevents imploding of the vessel when the inlet and outlet gas flows are discontinued is also provided. The apparatus includes a containment portion adjacent to the vessel and in communication with the vessel for containing gas from the vessel, a back-pressure regulator and a conventional regulator for monitoring the pressure of the containment portion, a high-purity inert purge gas source in communication with the conventional regulator, adapted to backfill the containment portion with purified inert gas when the monitored pressure drops to a predetermined lower level, the back-pressure regulator adapted to vent the containment portion when the monitored pressure rises to a predetermined higher level.
摘要:
Methods for preventing cavitation in high aspect ratio dielectric regions in a semiconductor device, and the device so formed, are disclosed. The invention includes depositing a first dielectric in the high aspect ratio dielectric region between a pair of structures, and then removing the first dielectric to form a bearing surface adjacent each structure. The bearing surface prevents cavitation of the interlayer dielectric that subsequently fills the high aspect ratio region.
摘要:
A double gated silicon-on-insulator (SOI) MOSFET is fabricated by forming epitaxially grown channels, followed by a damascene gate. The double gated MOSFET features narrow channels, which increases current drive per layout width and provides low out conductance.