Abstract:
A radiation-emitting semiconductor device includes at least one semiconductor chip having a semiconductor layer sequence having an active region that produces radiation; a mounting surface on which at least one electrical contact for external contacting of the semiconductor chip is formed, wherein the mounting surface runs parallel to a main extension plane of the semiconductor layer sequence; a radiation exit surface running at an angle to or perpendicularly to the mounting surface; a radiation-guiding layer arranged in a beam path between the semiconductor chip and the radiation exit surface; and a reflector body adjacent to the radiation-guiding layer in regions and in a top view of the semiconductor device covers the semiconductor chip.
Abstract:
In at least one embodiment, the optoelectronic semiconductor component contains at least one chip support having electrical contact devices and also at least one optoelectronic semiconductor chip that is set up to produce radiation and that is mechanically and electrically mounted on the chip support. A component support is attached to the chip support. The semiconductor chip is situated in a recess in the component support. The component support is electrically insulated from the chip support and from the semiconductor chip. The component support is formed from a metal or from a metal alloy. On a top that is remote from the chip support, the component support is provided with a reflective coating.
Abstract:
An optoelectronic semiconductor component has a volume-emitting sapphire flip-chip with an upper side and a lower side. This optoelectronic semiconductor component is embedded in an optically transparent mold body with an upper side and a lower side.
Abstract:
A multi-pixel display device with an integrated circuit, a plurality of light-emitting semiconductor chips disposed on the integrated circuit, a display area having a plurality of pixels, each of the light-emitting semiconductor chips being associated with one of the pixels, a light-directing element disposed between the plurality of light-emitting semiconductor chips and the display area and adapted to direct the light of each light-emitting semiconductor chip from the plurality of light-emitting semiconductor chips to its associated pixel.
Abstract:
The invention relates to various aspects of a μ-LED or a μ-LED array for augmented reality or lighting applications, in particular in the automotive field. The μ-LED is characterized by particularly small dimensions in the range of a few μm.
Abstract:
The invention relates to various aspects of a μ-LED or a μ-LED array for augmented reality or lighting applications, in particular in the automotive field. The μ-LED is characterized by particularly small dimensions in the range of a few μm.
Abstract:
The invention relates to various aspects of a μ-LED or a μ-LED array for augmented reality or lighting applications, in particular in the automotive field. The μ-LED is characterized by particularly small dimensions in the range of a few μm.
Abstract:
An optical assembly and a display device are disclosed. In an embodiment an optical assembly includes a common carrier, a plurality of first chip groups, each first chip group comprising at least two similar luminescence diode chips, a plurality of second chip groups, each second chip group comprising at least two similar luminescence diode chips, wherein the first and second chip groups are arranged planar along a regular grid of first unit cells on a main surface of the common carrier and an optical element arranged downstream of the first and second chip groups with respect to a main radiation direction, wherein the luminescence diode chips of the different chip groups are configured to emit electromagnetic radiation of different wavelength characteristics.
Abstract:
A module for a video wall includes a plurality of light-emitting components; and a carrier including conduction regions, wherein the light-emitting components each include a top side including a top-side contact and an underside including an underside contact, the light-emitting components are configured to emit electromagnetic radiation via the top side, the underside contacts of the light-emitting components electrically conductively connect to the conduction regions, the top-side contacts electrically contact a conductive layer, the light-emitting components each include at least four light-emitting semiconductor chips, the light-emitting semiconductor chips within a light-emitting component interconnect in parallel with one another, the light-emitting semiconductor chips within a light-emitting component each electrically conductively connect to the top-side contacts and the underside contacts of the light-emitting component, a plurality of adjacent light-emitting components constitute a cluster, and the light-emitting semiconductor chips of the light-emitting components of a cluster includes an identical nominal wavelength.
Abstract:
An arrangement includes at least two modules for a video wall including light-emitting components arranged on a carrier, wherein a drive circuit that selectively drives the component at the carrier is provided for each component, row lines and column lines are provided, each drive circuit connects to a row line and a column line, each drive circuit connects to power supply lines, the carrier includes plated-through holes that guide the row lines and the column lines onto an underside of the carrier, the two modules are arranged on a further carrier, the further carrier includes at least one recess, an electrical connector is arranged in the recess, and the electrical connector connects column lines and/or row lines of the two modules to one another.