Abstract:
A capsule assembly for an ultra-high pressure furnace, comprising a containment tube having an interior side surface and defining a central longitudinal axis; a chamber suitable for accommodating a reaction assembly, a proximate and a distal end heater assembly, and a side heater assembly. When assembled, the chamber is contained within the containment tube and arranged longitudinally between the proximate and distal end heater assemblies. The side heater assembly is disposed adjacent the interior side surface and electrically connects the end heater assemblies with each other. Each end heater assembly has a respective peripheral side disposed adjacent the interior side surface Heat is produced in the chamber in response to an electric current flowing through the end and side heater assemblies. At least a proximate side heater barrier spaces apart the side heater assembly from at least the proximate end heater assembly, adjacent its peripheral side, operative to prevent a portion of the side heater assembly from intruding between the peripheral side of the proximate end heater assembly and the containment tube and short-circuiting at least part of the proximate end heater assembly, when the end heater assemblies move towards each other in response to a force applied by the ultra-high pressure furnace onto the capsule assembly along the central longitudinal axis.
Abstract:
A capsule assembly for an ultra-high pressure furnace, comprising a containment tube defining a central longitudinal axis, a chamber suitable for accommodating a reaction assembly, a proximate and a distal end heater assembly, and a side heater assembly. When assembled, the chamber and the side heater assembly are contained within the containment tube and arranged longitudinally between the proximate and distal end heater assemblies. Each end heater assembly comprises a respective conduction volume forming a respective electrical path through the end heat assembly. The side heater assembly electrically connects the respective conducting volumes to each other, and heat is produced in the chamber in response to an electric current flowing through the side heater assembly and the conducting volumes. At least the proximate end heater assembly comprises a first insulation component including an outer insulation volume. The conducting volume of at least the proximate end heater assembly includes an inner conducting volume, and the inner conducting volume is laterally spaced apart from the containment tube by the outer insulation volume.
Abstract:
Methods of forming composite particles include forming a source material over a plurality of nucleation cores and forming a catalyst material over the source material. Compositions of matter include a plurality of composite particles, each particle of the plurality comprising a plurality of nucleation cores, a source material disposed over the nucleation cores, and a catalyst material disposed over the source material. Methods of forming earth-boring tools include forming a plurality of composite particles, combining the plurality of composite particles with a plurality of grains of hard material, and catalyzing the formation of inter-granular bonds between the composite particles and the grains of hard material to faun a polycrystalline material. The plurality of in situ nucleated grains of hard material and the plurality of grains of hard material may be interspersed and inter-bonded.
Abstract:
Single-crystal diamond is composed of carbon in which a concentration of a carbon isotope 12C is not lower than 99.9 mass % and a plurality of inevitable impurities other than carbon. The inevitable impurities include nitrogen, boron, hydrogen, and nickel, and a total content of nitrogen, boron, and hydrogen of the plurality of inevitable impurities is not higher than 0.01 mass %. In order to manufacture single-crystal diamond, initially, a hydrocarbon gas in which a concentration of the carbon isotope 12C is not lower than 99.9 mass % is subjected to denitrification.
Abstract:
Superabrasive tools and methods for the making thereof are disclosed and described. In one aspect, superabrasive particles are chemically bonded to a matrix support material according to a predetermined pattern by a braze alloy. The brazing alloy may be provided as a powder, thin sheet, or sheet of amorphous alloy. A template having a plurality of apertures arranged in a predetermined pattern may be used to place the superabrasive particles on a given substrate or matrix support material.
Abstract:
Polycrystalline diamond having excellent resistance to crack propagation is provided. The polycrystalline diamond includes layered diamond and granular diamond. The layered diamond is formed by laminating plate-like diamond layers. When the polycrystalline diamond is observed in an arbitrary cross section, the layered diamond appearing at an observation visual field in the cross section occupies an area of more than or equal to 90% of the total area of the polycrystalline diamond in the observation visual field.
Abstract:
Large-scale manufacturing of gallium nitride boules using m-plane or wedge-shaped seed crystals can be accomplished using ammonothermal growth methods. Large-area single crystal seed plates are suspended in a rack, placed in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and crystals are grown ammonothermally. The orientation of the m-plane or wedge-shaped seed crystals are chosen to provide efficient utilization of the seed plates and of the volume inside the autoclave or high pressure apparatus.
Abstract:
A method for large-scale manufacturing of gallium nitride boules. Large-area single crystal seed plates are suspended in a rack, placed in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and grown ammonothermally. The seed orientation and mounting geometry are chosen to provide efficient utilization of the seed plates and of the volume inside the autoclave or high pressure apparatus. The method is scalable up to very large volumes and is cost effective.
Abstract:
A multistage ultra high pressure multichamber, have among which stages can be included pumps. A chamber has another chamber inside which also contain a pump or a pumping system towards the inside, where a third chamber is considered with its pumping system towards its interior successively the device is useful in making of ultra high pressure sinterized material parts, manufacture of parts made of new materials like synthetic diamond, manufacture of material for pharmaceutical products and hydrowasher using this new technique to increase its pressure.