Abstract:
Aperiodic channel state information (CSI) reporting is discussed. An example user equipment includes a receiver circuit, processor, and transmitter circuit. The receiver circuit receives transmissions from a plurality of serving cells via a carrier aggregation (CA) mode and receives an aperiodic CSI reporting request indicating a set for CSI reporting. The plurality of serving cells comprises at least six serving cells, and one or more of the plurality is associated with the indicated set. The processor is operably coupled to the receiver circuit and calculates one or more CSI parameters for each serving cell of the plurality that is associated with the indicated set; and generates an aperiodic CSI report based at least in part on the calculated CSI parameters for each serving cell associated with the indicated set. The transmitter circuit transmits the aperiodic CSI report to an Evolved NodeB (eNB) via a physical uplink shared channel (PUSCH).
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for multiplexing channel state information and hybrid automatic repeat request-acknowledgement information. Other embodiments may be described and claimed.
Abstract:
Technology to determine a Hybrid Automatic Repeat reQuest-ACKnowledge (HARQ-ACK) codebook size for inter-band time division duplex (TDD) carrier aggregation (CA) is disclosed. In an example, a user equipment (UE) operable to determine a HARQ-ACK codebook size for inter-band TDD CA can include computer circuitry configured to: Determine a HARQ bundling window for inter-band TDD CA including a number of downlink (DL) subframes using HARQ-ACK feedback; divide the HARQ bundling window into a first part and a second part; and calculate the HARQ-ACK codebook size based on the first part and the second part. The first part can include DL subframes of configured serving cells that occur no later than the DL subframe where a downlink control information (DCI) transmission for uplink scheduling on a serving cell is conveyed, and the second part can include physical downlink shared channel (PDSCH) subframes occurring after the DCI transmission of the serving cells.
Abstract:
Channel state information (CSI) feedback of common CSI components is discussed. An example user equipment (UE) includes a receiver circuit, processor, and transmitter circuit. The receiver circuit is configured to receive CSI configuration information for a plurality of downlink (DL) cells that indicates a first group of two or more of the DL cells and at least one CSI component designated for common reporting for the first group. The processor is configured to calculate a group value for each of the at least one CSI components designated for common reporting for the first group and selectively calculate, for each DL cell of the first group, individual values for any CSI components not designated for common reporting for the first group. The transmitter circuit is configured to transmit the group value for each of the designated CSI components and the individual values for any additional CSI components.
Abstract:
Technology for a user equipment (UE) operable to report periodic channel state information (CSI) is disclosed. The UE can determine a reporting period (Npd) of the UE for a serving cell. The UE can identify a Time-Division Duplex (TDD) uplink-downlink (UL-DL) configuration of a primary cell of the UE. The UE can transmit a periodic CSI report for the serving cell to an evolved node B (eNB) using a physical uplink control channel (PUCCH) on the primary cell according to the reporting period. The UE can use the reporting period of Npd=1 for the serving cell if the TDD UL-DL configuration of the primary cell is one of 0, 1, 3, 4, or 6 and all UL subframes of the primary cell in a radio frame are used for periodic CSI reporting.
Abstract:
Generally, this disclosure provides apparatus and methods for improved indication of cell information in a wireless network. The cell information may include an evolved Node B (eNB) carrier type. The UE device may include a receiver circuit configured to receive a Radio Resource Control (RRC) message from an evolved Node B (eNB) of a serving cell, the RRC message comprising carrier information associated with the serving cell eNB; a processing circuit configured to extract, from the serving cell eNB carrier information: a carrier type, synchronization information and Radio Resource Management (RRM) measurement information; a synchronization circuit configured to synchronize the UE to the serving cell eNB based on the synchronization information associated with the serving cell eNB carrier information; and a signal measurement circuit configured to perform RRM signal measurements on the serving cell eNB based on the RRM measurement information associated with the serving cell eNB carrier information.
Abstract:
Techniques to manage heterogeneous carrier types are described. User equipment may comprise a processor circuit and a network control component for execution on the processor circuit to locate a synchronization signal (SS) and a cell-specific reference signal (CRS) in a physical resource block (PRB) pair of a long term evolution (LTE) system, the PRB pair having a physical signal pattern for a first carrier type, the physical signal pattern for the first carrier type to have a same number of defined positions between the SS and the CRS within the PRB pair as a physical signal pattern for a second carrier type. Other embodiments are described and claimed.
Abstract:
Technology for dynamically reconfiguring an uplink-downlink (UL-DL) time-division duplexing (TDD) configuration is disclosed. In an example, a user equipment (UE) can have computer circuitry configured to: Receive a UL-DL reconfiguration indicator from a node to dynamically reconfigure a flexible subframe (FIexSF) to a different UL-DL transmission direction from a semi-static UL-DL configuration; apply a DL channel timing based on a DL favored UL-DL configuration; and apply a UL channel timing based on a UL favored UL-DL configuration. The FIexSF can be capable of changing an UL-DL transmission direction. The DL favored UL-DL configuration can include more DL subframes than a semi-static UL-DL TDD configuration for the UE, and the UL favored UL-DL configuration includes more UL subframes than a semi-static UL-DL TDD configuration for the UE.
Abstract:
Embodiments of a system and method for reporting channel state information (CSI) in a wireless network are generally described herein. In some embodiments, an apparatus of a User Equipment (UE) can include physical layer circuitry to receive, in a first subframe, a first aperiodic CSI request from a first cell group, and a second aperiodic CSI request from a second cell group. The UE can include processing circuitry to determine a number of requested CSI processes corresponding to the first aperiodic CSI request and the second aperiodic CSI request. Additionally, the processing circuitry can select a subset of the requested CSI processes when the determined number of requested CSI processes is more than five. Furthermore, the processing circuitry can calculate CSI for the selected CSI processes.
Abstract:
An apparatus is configured for a next Generation NodeB (gNB). The apparatus comprises baseband circuitry and/or application circuitry which includes a radio frequency (RF) interface and one or more processors. The one or more processors are configured to determine a transmission mode for a user equipment (UE) device; dynamically determine a repetition level sequence for a physical downlink shared channel (PDSCH) based on a transmission time interval (TTI) and the transmission mode; generate repetition level signaling for the determined repetition level sequence; and provide the generated repetition level signaling to the RF interface for transmission to the UE device.