Abstract:
A microprocessor includes a plurality of processing cores and an uncore random access memory (RAM) readable and writable by each of the plurality of processing cores. Each core of the plurality of processing cores comprises microcode run by the core that implements architectural instructions of an instruction set architecture of the microprocessor. The microcode is configured to both read and write the uncore RAM to accomplish inter-core communication between the plurality of processing cores.
Abstract:
An apparatus is provided for protecting a basic input/output system (BIOS) in a computing system. The apparatus includes a BIOS read only memory (ROM), a tamper detector, a random number generator, and a JTAG control chain. The BIOS ROM includes BIOS contents stored as plaintext, and an encrypted message digest, where the encrypted message digest has an encrypted version of a first message digest that corresponds to the BIOS contents. The tamper detector is operatively coupled to the BIOS ROM, and is configured to generate a BIOS check interrupt at a combination of prescribed intervals and event occurrences, and is configured to access the BIOS contents and the encrypted message digest upon assertion of the BIOS check interrupt, and is configured to direct a microprocessor to generate a second message digest corresponding to the BIOS contents and a decrypted message digest corresponding to the encrypted message digest, and is configured to compare the second message digest with the decrypted message digest, and is configured to preclude the operation of the microprocessor if the second message digest and the decrypted message digest are not equal, where the event occurrences include input/output accesses. The random number generator disposed within the microprocessor, and generates a random number at completion of a current BIOS check, which is employed to set a following prescribed interval, whereby the prescribed intervals are randomly varied. The JTAG control chain is configured to program the combination of prescribed intervals and event occurrences within tamper detection microcode storage.
Abstract:
A microprocessor includes a plurality of processing cores, a service processing unit and a memory accessible by both the service processing unit and the plurality of processing cores. At least one of the plurality of processing cores is configured to write a patch to the memory. The patch comprises one or more instructions to be fetched from the memory and executed by the service processing unit after written to the memory by the at least one of the plurality of processing cores.
Abstract:
A method for encrypting a program for subsequent execution by a microprocessor configured to decrypt and execute the encrypted program includes receiving an object file specifying an unencrypted program that includes conventional branch instructions whose target address may be determined pre-run time. The method also includes analyzing the program to obtain chunk information that divides the program into a sequence of chunks each comprising a sequence of instructions and that includes encryption key data associated with each of the chunks. The encryption key data associated with each of the chunks is distinct. The method also includes replacing each of the conventional branch instructions that specifies a target address that is within a different chunk than the chunk in which the conventional branch instruction resides with a branch and switch key instruction. The method also includes encrypting the program based on the chunk information.
Abstract:
A microprocessor includes a plurality of registers that holds an architectural state of the microprocessor and an indicator that indicates a boot instruction set architecture (ISA) of the microprocessor as either the x86 ISA or the Advanced RISC Machines (ARM) ISA. The microprocessor also includes a hardware instruction translator that translates x86 ISA instructions and ARM ISA instructions into microinstructions. The hardware instruction translator translates, as instructions of the boot ISA, the initial ISA instructions that the microprocessor fetches from architectural memory space after receiving a reset signal. The microprocessor also includes an execution pipeline, coupled to the hardware instruction translator. The execution pipeline executes the microinstructions to generate results defined by the x86 ISA and ARM ISA instructions. In response to the reset signal, the microprocessor initializes its architectural state in the plurality of registers as defined by the boot ISA prior to fetching the initial ISA instructions.
Abstract:
An apparatus including a ROM, a selector, and a detector. The ROM has partitions and encrypted digests. Each of the partitions is stored as plaintext, and each of the encrypted digests includes an encrypted version of a first digest associated with a corresponding one of the partitions. The selector selects one or more of the partitions responsive to an interrupt. The detector accesses the one or more of the partitions and corresponding one or more of the encrypted digests upon assertion of the interrupt, and directs a microprocessor to generate one or more of second digests corresponding to the one or more of the partitions and one or more of decrypted digests corresponding to the one or more of encrypted digests using the same algorithms and key that were employed to generate the first digest and the encrypted digests, and compares the one or more of the second digests with the one or more of the decrypted digests, and precludes operation of the microprocessor if the one or more of the second digests and the one or more of the decrypted digests are not pair wise equal.
Abstract:
A microprocessor includes a cache memory and a control module. The control module makes the cache size zero and subsequently make it between zero and a full size of the cache, counts a number of evictions from the cache after making the size between zero and full and increase the size when the number of evictions reaches a predetermined number of evictions. Alternatively, a microprocessor includes: multiple cores, each having a first cache memory; a second cache memory shared by the cores; and a control module. The control module puts all the cores to sleep and makes the second cache size zero and receives a command to wakeup one of the cores. The control module counts a number of evictions from the first cache of the awakened core after receiving the command and makes the second cache size non-zero when the number of evictions reaches a predetermined number of evictions.
Abstract:
An apparatus including a ROM and a microprocessor. The ROM includes BIOS contents that are stored as plaintext and an encrypted digest. The encrypted digest includes an encrypted version of a first digest corresponding to the BIOS contents. The microprocessor is coupled to the BIOS ROM, and includes a tamper timer and a tamper detector. The tamper timer periodically generates an interrupt at a prescribed interval. The tamper detector accesses the BIOS contents and the encrypted digest upon assertion of the interrupt, and directs the microprocessor to generate a second digest corresponding to the BIOS contents and a decrypted digest corresponding to the encrypted digest using the same algorithms and key that were employed to generate the first digest and the encrypted digest, and compares the second digest with the decrypted digest, and precludes operation of the microprocessor if the second digest and the decrypted digest are not equal.
Abstract:
A microprocessor includes a plurality of memories each configured to hold microcode instructions. At least a first of the plurality of memories is configured to provide M-bit wide words of compressed microcode instructions, and at least a second of the plurality of memories is configured to provide N-bit wide words of uncompressed microcode instructions. M and N are integers greater than zero and N is greater than M. The microprocessor also includes a decompression unit configured to decompress the compressed microcode instructions after being fetched from the at least a first of the plurality of memories and before being executed.
Abstract:
A multi-core processor includes microcode distributed in each core enabling each core to participate in a de-centralized inter-core state discovery process. In a related microcode-implemented method, states of a multi-core processor are discovered by at least two cores participating in a de-centralized inter-core state discovery process. The inter-core state discovery process is carried out through a combination of microcode executing on each participating core and signals exchanged between the cores through sideband non-system-bus communication wires. The discovery process is unmediated by any centralized non-core logic. Applicable discoverable states include target and composite power states, whether and how many cores are enabled, the availability and distribution of various resources, and hierarchical structures and coordination systems for the cores. The inter-core state discovery process may be carried out in accordance with various hierarchical coordination systems involving chained inter-core communications.