摘要:
A method is provided for controlling substrate thickness. At least one etchant is dispensed from at least one dispenser to a plurality of different locations on a surface of a spinning substrate to perform etching. A thickness of the spinning substrate is monitored at the plurality of locations, so that the thickness of the substrate is monitored at each individual location while dispensing the etchant at that location. A respective amount of etching performed at each individual location is controlled, based on the respective monitored thickness at that location.
摘要:
An integrated circuit structure includes a semiconductor substrate having a front side and a backside. A through-silicon via (TSV) penetrates the semiconductor substrate. The TSV has a back end extending to the backside of the semiconductor substrate. A redistribution line (RDL) is over the backside of the semiconductor substrate and connected to the back end of the TSV. A silicide layer is over and contacting the RDL.
摘要:
A method of forming integrated circuits includes laminating a patterned film including an opening onto a wafer, wherein a bottom die in the wafer is exposed through the opening. A top die is placed into the opening. The top die fits into the opening with substantially no gap between the patterned film and the top die. The top die is then bonded onto the bottom die, followed by curing the patterned film.
摘要:
A wafer is provided with a through via extending a portion of a substrate, an interconnect structure electrically connecting the through via, and a polyimide layer formed on the interconnect structure. Surface modification of the polyimide layer is the formation of a thin dielectric film on the polyimide layer by coating, plasma treatment, chemical treatment, or deposition methods. The thin dielectric film is adhered strongly to the polyimide layer, which can reduce the adhesion between the wafer surface and an adhesive layer formed in subsequent carrier attaching process.
摘要:
An integrated circuit structure includes a semiconductor substrate having a front side and a backside. A through-silicon via (TSV) penetrates the semiconductor substrate. The TSV has a back end extending to the backside of the semiconductor substrate. A redistribution line (RDL) is over the backside of the semiconductor substrate and connected to the back end of the TSV. A silicide layer is over and contacting the RDL.
摘要:
A device and system for thin wafer cleaning is disclosed. A preferred embodiment comprises a spin chuck having at least three holding clamps. A thin wafer with a wafer frame is mounted on the spin chuck through a tape layer. When the holding clamps are unlocked, there is no interference with the removal and placement of the wafer frame. On the other hand, when the holding clamps are locked, the holding clamps are brought into contact with the outer edge of the wafer frame so as to prevent the wafer frame from moving laterally. Furthermore, the shape of the holding clamps in a locked position is capable of preventing the wafer frame from moving vertically.
摘要:
A method of forming a semiconductor device is presented. A conductor is embedded within a substrate, wherein the substrate contains a non-conducting material. The backside of the substrate is ground to a thickness wherein at least 1 μm of the non-conducting material remains on the backside covering the conductor embedded within the substrate. Chemical mechanical polishing (CMP) is employed with an undiscerning slurry to the backside of the substrate, thereby planarizing the substrate and exposing the conductive material. A spin wet-etch, with a protective formulation, is employed to remove a thickness y of the non-conducting material from the backside of the substrate, thereby causing the conductive material to uniformly protrude from the backside of the substrate.
摘要:
A method is provided for controlling substrate thickness. At least one etchant is dispensed from at least one dispenser to a plurality of different locations on a surface of a spinning substrate to perform etching. A thickness of the spinning substrate is monitored at the plurality of locations, so that the thickness of the substrate is monitored at each individual location while dispensing the etchant at that location. A respective amount of etching performed at each individual location is controlled, based on the respective monitored thickness at that location.
摘要:
A method of handling a thin wafer includes forming a support structure at the edge of a thinned wafer that is encapsulated by a protection layer. The support structure can be an adhesive layer enclosing the protection layer, a dielectric-filled trench embedded in the thinned wafer and surrounding the protection layer, or a housing affixing the edge of the thinned wafer.
摘要:
A method of forming a semiconductor device is presented. A conductor is embedded within a substrate, wherein the substrate contains a non-conducting material. The backside of the substrate is ground to a thickness wherein at least 1 μm of the non-conducting material remains on the backside covering the conductor embedded within the substrate. Chemical mechanical polishing (CMP) is employed with an undiscerning slurry to the backside of the substrate, thereby planarizing the substrate and exposing the conductive material. A spin wet-etch, with a protective formulation, is employed to remove a thickness y of the non-conducting material from the backside of the substrate, thereby causing the conductive material to uniformly protrude from the backside of the substrate.