Abstract:
The present invention relates to a package for semiconductor device and the fabrication method for integrally encapsulating a whole semiconductor chip within a molding compound. In the semicondcutor device package, bonding pads distributed on the top of the chip are redistributed into an array of redistributed bonding pads located in an dielectric layer by utilizing the redistribution technique. The electrodes or signal terminals on the top of the semiconductor chip are connected to an electrode metal segment on the bottom of the chip by conductive materials filled in through holes formed in a silicon substrate of a semiconductor wafer. Furthermore, the top molding portion and the bottom molding portion seal the semiconductor chip completely, thus providing optimum mechanical and electrical protections.
Abstract:
A method of making a chip-exposed semiconductor package comprising the steps of: plating a plurality of electrode on a front face of each chip on a wafer; grinding a backside of the wafer and depositing a back metal then separating each chips; mounting the chips with the plating electrodes adhering onto a front face of a plurality of paddle of a leadframe; adhering a tape on the back metal and encapsulating with a molding compound; removing the tape and sawing through the leadframe and the molding compound to form a plurality of packaged semiconductor devices.
Abstract:
A stacked power semiconductor device includes vertical metal oxide semiconductor field-effect transistors and dual lead frames packaged with flip-chip technology. In the method of manufacturing the stacked power semiconductor device, a first semiconductor chip is flip chip mounted on the first lead frame. A mounting clips is connected to the electrode at back side of the first semiconductor chip. A second semiconductor chip is mounted on the second lead frame, which is then flipped and stacked on the mounting clip.
Abstract:
A method for making a wire bond package comprising the step of providing a lead frame array comprising a plurality of lead frame units therein, each lead frame unit comprises a first die pad and a second die pad each having a plurality of tie bars connected to the lead frame array, a plurality of reinforced bars interconnecting the first and second die pads; the reinforced bars are removed after molding compound encapsulation.
Abstract:
Preparation methods of forming packaged semiconductor device, specifically for flip-chip vertical power device, are disclosed. In these methods, a vertical semiconductor chip is flip-chip attached to a lead frame and then encapsulated with plastic packing materials. Encapsulated chip is then thinned to a predetermined thickness. Contact terminals connecting the chip with external circuit are formed by etching at least a bottom portion of the lead frame connected.
Abstract:
A bypass capacitor is directly integrated on top of a MOSFET chip. The capacitor comprises multi layers of conductive material and dielectric material staking on top of each other with connection vias through dielectric layer for connecting different conductive layers. The method of integrating the bypass capacitor comprises repeating steps of depositing a dielectric layer, forming connection vias through the dielectric layer, depositing a conductive layer and patterning the conductive layer.
Abstract:
A bypass capacitor is directly integrated on top of a MOSFET chip. The capacitor comprises multi layers of conductive material and dielectric material staking on top of each other with connection vias through dielectric layer for connecting different conductive layers. The method of integrating the bypass capacitor comprises repeating steps of depositing a dielectric layer, forming connection vias through the dielectric layer, depositing a conductive layer and patterning the conductive layer.