Abstract:
A planar metallic foil is formed defining a lie plane which includes a supporting frame for a mount pad and corresponding leads being short-circuited to the mount pad. The mount pad is then down-set on a plane being parallel to the lie plane so as to keep at least a group of leads on the lie plane and separate by shearing the mount plane from the group of leads. A die is then mounted on a first surface of the mount pad. Electrical connections are then formed between the die and the group of leads. The frame is then encapsulated in a protective package so as to leave a second surface of the mount pad, being opposite to the first surface, exposed from the protective package.
Abstract:
A control circuit is connected to a plurality of driving stages. Each driving stage includes a high-voltage terminal for driving an inductive load. The control circuit is provided with a corresponding plurality of control stages. These control stages are integrated in a single semiconductor body and connected each to the high-voltage terminal of a respective driving stage.
Abstract:
A process is presented for realizing buried microchannels (10) in an integrated structure (1) comprising a monocrystalline silicon substrate (2). The process forms in the substrate (2) at least one trench (4). A microchannel (10) is obtained starting from a small surface port of the trench (4) by anisotropic etching of the trench. The microchannel (10) is then completely buried in the substrate (2) by growing a microcrystalline structure to enclose the small surface port.
Abstract:
A power amplification device includes an input for receiving a signal having a useful or desired frequency band, and power amplification circuitry of the delta-sigma type connected to the input. The power amplification circuitry exhibits an order greater than or equal to one in the useful frequency band, and an order greater than or equal to one outside the useful frequency band.
Abstract:
A non-volatile memory device suitable to be programmed in a sequential mode. The device includes a plurality of blocks of memory cells each one for storing a word, each block being identified by an address. An input circuit for loading an input address at the beginning of a programming procedure and an internal circuit for setting an internal address to the input address. The device further includes a data input circuit for loading a predetermined number of input words in succession, and a latch circuit for latching a page consisting of the predetermined number of input words. The memory then executes a programming operation including writing the page in the blocks identified by consecutive addresses starting from the internal address, and increments the internal address of the predetermined number in response to the completion of the programming operation.
Abstract:
A nonvolatile memory with a memory array arranged in rows and columns of memory cells in NOR configuration, the memory cells arranged on a same column being connected to one of a plurality of bit lines and a column decoder. The column decoder comprises a plurality of selection stages, each of which is connected to respective bit lines and receives first bit line addressing signals. The selection stages comprise word programming selectors controlled by the first bit line addressing signals and supplying a programming voltage to only one of the bit lines of each selection stage. Each selection stage moreover comprises a string programming selection circuit controlled by second bit line addressing signals thereby simultaneously supplying the programming voltage to a plurality of the bit lines of each selection stage.
Abstract:
An integrated circuit includes an input pad for receiving an externally generated analog signal, and a pre-sampling circuit for pre-sampling at least one internally generated analog reference signal. An analog-to-digital converter is connected to the input pad for providing a numerical value of the externally generated analog signal, and is connected to the pre-sampling circuit for providing a numerical value of the internally generated analog reference signal. A fault signaling circuit is connected to the pre-sampling circuit and to the analog-to-digital converter for generating a fault signal when the numerical value of the externally generated analog signal is equal to the numerical value of the internally generated analog reference signal. The fault signal indicates that an electrical connection providing the externally generated analog signal to the input pad is faulty.
Abstract:
A parallel configuration system for hybrid propulsion vehicles is provided. The drive thrust is distributed between an electric engine and an internal combustion engine through a transmission system delivering the torque of both engines to the vehicle wheels. The internal combustion engine is a diesel engine operating at steady state at an operation point having the highest efficiency and with the consumption and emissions being reduced.
Abstract:
A semiconductor electronic device is disclosed, which includes a die of a semiconductor material and a holder connected electrically together by wire leads of copper, the semiconductor material die being formed with a plurality of contact pads; the device being characterized by having a welding stud bump of a metal material selected from a group comprising gold, palladium, and alloys thereof, formed on each contact pad in said plurality, each copper wire lead being welded with one end on a stud bump and with the other end to said holder. This electronic device is highly reliable and can be fabricated simply at a low cost.
Abstract:
A method for controlling the bit-rate of a bitstream of encoded video signals at a variable bitrate, the bitstream being generated by compressing a video sequence of moving pictures, wherein each picture comprises a plurality of macroblocks of pixels compressed by any of transform coding, temporal prediction, bi-dimensional motion compensated interpolation or combinations thereof, to produce any of I and/or P and/or B frames, the method involving quantization of said macroblocks effected as a function of a quantization parameter. The method includes defining a target bit-rate as well as maximum positive and negative error values between the target bit-rate and an average value of the current bit-rate of the bitstream, controlling the current bit-rate in order to constrain it between said maximum positive and negative error values, and defining an allowed range of variation for updating at least one reference parameter representative of the average value of the quantization parameter over each picture, wherein said allowed range is determined as a function of the target bit-rate and the maximum positive and negative error values.