Abstract:
A nanostructure includes a plurality of substantially spherically curved carbon layers having diameters in a range of 1 nanometer to 1000 nanometers and a plurality of halogen atoms attached to an outer convex side of the carbon layers. A composition of matter includes a liquid fuel and an additive including at least one liquid and a plurality of carbon nano-onions. A method of fabricating an additive for liquid fuel includes creating a carbon-based material using a plasma in an environment including at least one hydrocarbon gas and/or at least one liquid containing hydrocarbons, organometallic metal-complex, and/or element-organic compounds, evaporating organic material from the carbon-based material, halogenating the carbon-based material, and extracting carbon nano-onions from the halogenated carbon-based material.
Abstract:
Disclosed herein is a method for synthesizing a nano-emulsion fuel composition. The method may include forming a water-in-fossil fuel emulsion by dispersing water into a fossil fuel in the presence of a surfactant, synthesizing carbon quantum dots with an average diameter between 0.5 nanometers to 20 nanometers, forming a mixture of the synthesized carbon quantum dots and the water-in-fossil fuel emulsion by dispersing the synthesized carbon quantum dots into the water-in-fossil fuel emulsion; the carbon quantum dots comprising 1 ppm to 10000 ppm of the mixture, and forming a nano-emulsion fuel composition by mixing a biofuel into the mixture of carbon quantum dots and the water-in-fossil fuel emulsion.
Abstract:
The present embodiments describe a method to reduce vanadium corrosion in a gas turbine by adding an oleophilic corrosion inhibitor into a combustion fuel, in which the oleophilic corrosion inhibitor comprises carbon black support particles and magnesium bonded to the carbon black support particles. The carbon black support particles comprise a particle size less than 40 nanometer (nm), and oxygen content less than 1 weight percent (wt %), and a surface area of at least 50 square meters per gram (m2/gram).
Abstract:
The present invention relates, inter alia, to a process for enriching a hydrocarbon fuel for use in an internal combustion engine, the process comprising: (i) contacting a hydrocarbon fuel with a gas stream containing hydrogen gas such that at least some of the hydrogen gas is introduced into the hydrocarbon fuel to produce an enriched hydrocarbon fuel; and optionally (ii) delivering the enriched hydrocarbon fuel to an internal combustion engine. The present invention further provides a device for use in the process.
Abstract:
A fuel and nanodiamond mixture includes a fuel for combustion and a fuel additive in the form of nanodiamonds mixed into the fuel to be dispersed throughout the fuel.
Abstract:
A composition contains an additive for assisting with the regeneration of the PF in the form of an organic dispersion of iron particles and a detergent including a polyester quaternary ammonium salt.
Abstract:
Nanoparticle compositions include a plurality of spherical-shaped nanoparticles and a plurality of coral-shaped metal nanoparticles, each coral-shaped metal nanoparticle having a non-uniform cross section and a globular structure formed by multiple, non-linear strands joined together without right angles. The nanoparticle compositions can be one-part or multi-part compositions. Nanoparticle compositions can have a mass ratio of spherical-shaped to coral-shaped nanoparticles of about 5:1-20:1, about 7.5:1-15:1, about 9:1-11:1, or about 10:1 and/or a number ratio of spherical-shaped to coral-shaped nanoparticles of about 50:1-200:1, about 75:1-150:1, about 90:1-110:1 or about 100:1. The nanoparticle compositions can be used for various purposes, including as an antimicrobial (e.g., anti-viral, anti-bacteria, or anti-fungal composition), fuel additive, or treating fabrics.
Abstract:
Nanoparticle compositions include a plurality of spherical-shaped nanoparticles and a plurality of coral-shaped metal nanoparticles, each coral-shaped metal nanoparticle having a non-uniform cross section and a globular structure formed by multiple, non-linear strands joined together without right angles. The nanoparticle compositions can be one-part or multi-part compositions. Nanoparticle compositions can have a mass ratio of spherical-shaped to coral-shaped nanoparticles of about 5:1-20:1, about 7.5:1-15:1, about 9:1-11:1, or about 10:1 and/or a number ratio of spherical-shaped to coral-shaped nanoparticles of about 50:1-200:1, about 75:1-150:1, about 90:1-110:1 or about 100:1. The nanoparticle compositions can be used for various purposes, including as an antimicrobial (e.g., anti-viral, anti-bacteria, or anti-fungal composition), fuel additive, or treating fabrics.
Abstract:
A combustion process wherein a comburent, a fuel and the following components are fed: i) component B) sulphur or compounds containing sulphur in an amount to have a molar ration B1/C1≧0.5, wherein B1 is the sum by moles between the total amount of sulphur present in component B)+the total amount of sulphur (component B11)) contained in the fuel, C1 is the sum by moles between the total amount of alkaline and/or alkaline-earth metals contained in the fuel (component C11))+the amount (component C)) of alkaline and/or alkaline-earth metals in the form of salts and/or oxides contained in component B), ii) component A), comprising low-melting salts and/or oxides or their mixtures, having a melting temperature