Abstract:
A semiconductor electro-optical phase shifter may include a first optical action zone having a minimum doping level, a first lateral zone and a central zone flanking the first optical action zone along a first axis, doped respectively at first and second conductivity types so as to form a P-I-N junction between the first lateral zone and the central zone. The phase shifter may include a second optical action zone having a threshold doping level, and a second lateral zone flanking the second optical action zone with the central zone along the first axis doped at the first conductivity type so as to form a P-I-N junction between the second lateral zone and the central zone.
Abstract:
At least three electrically conducting blocks are disposed within an isolating region; and at least two of them are mutually separated and capacitively coupled by a part of the isolating region. At least two of them, being semiconductor, have opposite types of conductivity or identical types of conductivity, but with different concentrations of dopants, and these are in mutual contact by one of their sides. The mutual arrangement of these blocks within the isolating region, their type of conductivity and their concentration of dopants form at least one electronic module. Some of the blocks define input and output blocks.
Abstract:
An integrated circuit includes a substrate and an interconnect part above the substrate, and further includes a photosensitive region in the substrate. A filter is provided aligned with the photosensitive region. The filter is formed by at least one layer of filter material. In one implementation for front side illumination, the layer of filter material is positioned above the photosensitive region between the interconnect part and the substrate. In another implementation for back side illumination, the layer of filter material is positioned below the photosensitive region opposite the interconnect part. The layer of filter material is configured such that a product of the thickness of the layer of filter material and the imaginary part of the refractive index of the layer of filter material is above 1 nm.
Abstract:
A method for localizing an object, including the acts of: transmission of a first signal by a first transmitter assigned to the object and of a second signal by at least one second transmitter; reception of the first and of the second signal by at least three receivers; in each receiver and for the first and the second signal: a) generation of a first and of a second reference signal; b) correlation between the first signal and the first reference signal and between the second signal and the second reference signal; c) interpolation of samples resulting from the correlation; d) deduction of the propagation time of the first and of the second signal; e) calculation of the difference between the propagation times of the first and of the second signal; and, by triangulation, deduction of the position of the object.
Abstract:
A terahertz imager includes an array of pixel circuits. Each pixel circuit has an antenna and a detector. The detector is coupled to differential output terminals of the antenna. A frequency oscillator is configured to generate a frequency signal on an output line. The output line is coupled to an input terminal of the antenna of at least one of the pixel circuits.
Abstract:
An integrated imaging device supports front face illumination with one or more photosensitive regions formed in a substrate. A lower dielectric region is provided over the substrate, the lower dielectric region having an upper face. A metal optical filter having a metal pattern is provided on the upper face (or extending into the lower dielectric region from the upper face). An upper dielectric region is provided on top of the lower dielectric region and metal optical filter. The lower dielectric region is at least part of a pre-metal dielectric layer, and the upper dielectric region is at least part of a metallization layer.
Abstract:
An integrated circuit includes an UTBOX insulating layer under and plumb with first and second electronic components, and corresponding ground planes and oppositely-doped wells made plumb with them. The wells contact with corresponding ground planes. A pair of oppositely doped bias electrodes, suitable for connecting corresponding bias voltages, contacts respective wells and ground planes. A third electrode contacts the first well. A first trench isolates one bias electrode from the third electrode and extends through the layer and into the first well. A second trench isolates the first bias electrode from one component. This trench has an extent that falls short of reaching an interface between the first ground plane and the first well.
Abstract:
An integrated cell may include an nMOS transistor, and an pMOS transistor. The cell may be produced in fully depleted silicon-on-insulator technology, and it is possible for the substrates of the transistors of the cell to be biased with the same adjustable biasing voltage.
Abstract:
A photodiode has an active portion formed in a silicon substrate and covered with a stack of insulating layers successively including at least one first silicon oxide layer, an antireflection layer, and a second silicon oxide layer. The quantum efficiency of the photodiode is optimized by: determining, for the infrared wavelength, first thicknesses of the second layer corresponding to maximum absorptions of the photodiode, and selecting, from among the first thicknesses, a desired thickness, eoxD, so that a maximum manufacturing dispersion is smaller than a half of a pseudo-period separating two successive maximum absorption values.
Abstract:
A device includes a chip assembled on an interposer. An electrically-insulating layer coats an upper surface of the interposer around the chip. First metal lines run on the upper surface of the interposer and are arranged between conductive elements of connection to the chip. An end of each first metal line is arranged to extend beyond a projection of the chip on the interposer. A thermally-conductive via connects the end of the first metal line to a heat sink supported at an upper surface of the device.