Abstract:
A solid-state photodetector with variable spectral response that can produce a narrow or wide response spectrum of incident light. Some embodiments include a solid-state device structure that includes a first photodiode and a second photodiode that share a common anode region. Bias voltages applied to the first photodiode and/or the second photodiode may be used to control the thicknesses of depletion regions of the photodiodes and/or a common anode region to vary the spectral response of the photodetector. Thickness of the depletion regions and/or the common anode region may be controlled based on resistance between multiple contacts of the common anode region and/or capacitance of the depletion regions. Embodiments include control circuits and methods for determining spectral characteristics of incident light using the variable spectral response photodetector.
Abstract:
Silicon-based or other electronic circuitry is dissolved or otherwise disabled by reactive materials within a semiconductor chip should the chip or a device containing the chip be subjected to tampering. Triggering circuits containing normally-OFF heterojunction field-effect photo-transistors are configured to cause reactions of the reactive materials within the chips upon exposure to light. The normally-OFF heterojunction field-effect photo-transistors can be fabricated during back-end-of-line processing through the use of polysilicon channel material, amorphous hydrogenated silicon gate contacts, hydrogenated crystalline silicon source/drain contacts, or other materials that allow processing at low temperatures.
Abstract:
Silicon-based or other electronic circuitry is dissolved or otherwise disabled by reactive materials within a semiconductor chip should the chip or a device containing the chip be subjected to tampering. Triggering circuits containing normally-OFF heterojunction field-effect photo-transistors are configured to cause reactions of the reactive materials within the chips upon exposure to light. The normally-OFF heterojunction field-effect photo-transistors can be fabricated during back-end-of-line processing through the use of polysilicon channel material, amorphous hydrogenated silicon gate contacts, hydrogenated crystalline silicon source/drain contacts, or other materials that allow processing at low temperatures.
Abstract:
A method of forming an optoelectronic device and a silicon device on a single chip. The method may include; forming a stack of layers on a substrate in a first and second region, the stack of layers include a semiconductor layer, a first insulator layer, a waveguide, a second insulator layer, and a device base layer; forming the device on the device base layer in the second region; forming a device insulator layer on the device and on the device base layer in the second region; and forming the optoelectronic device in the first region, the optoelectronic device has a bottom cladding layer, an active region, and a top cladding layer, wherein the bottom cladding layer is on the semiconductor layer, the active region is on the bottom cladding layer, and the top cladding layer is on the active region.
Abstract:
Optoelectronic devices (e.g., optical proximity sensors), methods for fabricating optoelectronic devices, and systems including optoelectronic devices, are described herein. An optoelectronic device includes a light detector die that includes a light detector sensor area. A light source die is attached to a portion of the light detector die that does not include the light detector sensor area. An opaque barrier is formed between the light detector sensor area and the light source die, and a light transmissive material encapsulates the light detector sensor area and the light source die. Rather than requiring a separate base substrate (e.g., a PCB substrate) to which are connected a light source die and a light detector die, the light source die is connected to the light detector die, such that the light detector die acts as the base for the finished optoelectronic device. This provides for cost reductions and reduces the total package footprint.
Abstract:
The opto-electronic module (1) comprises —a first substrate member (P); —a third substrate member (B); —a second substrate member (O) arranged between said first and third substrate members and comprising one or more transparent portions (ta, tb) through which light can pass, said at least one transparent portion comprising at least a first optical structure (5a;5a′;5b;5b′); —a first spacer member (S1) comprised in said first substrate member (P) or comprised in said second substrate member (O) or distinct from and located between these, which comprises at least one opening (4a;4b); —a second spacer member (S2) comprised in said second substrate member (O) or comprised in said third substrate member (B) or distinct from and located between these, which comprises at least one opening (3); —a light detecting element (D) arranged on and electrically connected to said first substrate member (P); —a light emission element (E) arranged on and electrically connected to said first substrate member (P); —and a sensing element (8) comprised in or arranged at said third substrate member (B). Such modules (1) are particularly suitable as sensor modules for sensing a magnitude such as a pressure.
Abstract:
A semiconductor light detection element includes a plurality of avalanche photodiodes operating in Geiger mode and formed in a semiconductor substrate, quenching resistors connected in series to the respective avalanche photodiodes and arranged on a first principal surface side of the semiconductor substrate, and a plurality of through-hole electrodes electrically connected to the quenching resistors and formed so as to penetrate the semiconductor substrate from the first principal surface side to a second principal surface side. A mounting substrate includes a plurality of electrodes arranged corresponding to the respective through-hole electrodes on a third principal surface side. The through-hole electrodes and the electrodes are electrically connected through bump electrodes, and a side surface of the semiconductor substrate and a side surface of a glass substrate are flush with each other.
Abstract:
A semiconductor module, having an integrated circuit, a rewiring layer for externally connecting the integrated circuit, and at least one waveguide integrated into the semiconductor module for radar signals having a conductive pattern, which laterally surrounds the interior of the waveguides, the integrated circuit and the at least one waveguide being embedded, at least in regions, in a housing material of the semiconductor module; as well as a radar sensor, a motor vehicle radar system having such a semiconductor module, and a method for producing a semiconductor module.
Abstract:
Embodiments of the present invention provide an array substrate, a manufacturing method thereof, and a display device. The array substrate comprises: a pixel region, a data-line pad region and a gate-line pad region; the pixel region comprises: a pixel electrode, a gate electrode of a TFT, source and drain electrodes of the TFT, a connection electrode, and a common electrode; the data-line pad region comprises: an insulating layer, a semiconductor layer, a data line, and a data-line connection pad; the data line and the source and drain electrodes are of a same layer and a same material; and the gate-line pad region comprises: a gate line, an insulating layer, and a gate-line connection pad; the gate line and the gate electrode are of a same layer and a same material; and the gate-line connection pad and the source and drain electrodes are of a same layer and a same material. The array substrate can reduce the number of masks and exposure times, thereby reducing manufacturing costs and improving production efficiency.
Abstract:
A solid-state photodetector with variable spectral response that can produce a narrow or wide response spectrum of incident light. Some embodiments include a solid-state device structure that includes a first photodiode and a second photodiode that share a common anode region. Bias voltages applied to the first photodiode and/or the second photodiode may be used to control the thicknesses of depletion regions of the photodiodes and/or a common anode region to vary the spectral response of the photodetector. Thickness of the depletion regions and/or the common anode region may be controlled based on resistance between multiple contacts of the common anode region and/or capacitance of the depletion regions. Embodiments include control circuits and methods for determining spectral characteristics of incident light using the variable spectral response photodetector.