Abstract:
A photosensitive composition includes a plurality of quantum dots including an organic ligand on the surface thereof; a binder; a photopolymerizable monomer composition; photoinitiator; and a solvent, wherein the photopolymerizable monomer includes a main monomer having 1 to 6 carbon-carbon double bonds, a first accessory monomer having 8 to 20 carbon-carbon double bonds, and a second accessory monomer represented by Chemical Formula A; and a method of preparing the photosensitive composition and a quantum dot-polymer composite pattern prepared therefrom are provided: R1O-(L1)m-L3-A-L4-(L2)n-OR2 Chemical Formula A wherein, A, L1, L2, L3, L4, R1, and R2 are the same as defined herein.
Abstract:
Disclosed herein is a nanocrystal comprising a core comprising a first nanocrystal material, the first nanocrystal material including a Group II-VI semiconductor compound or a Group III-V semiconductor compound; a shell being disposed upon a surface of the core and comprising a second nanocrystal material, the second nanocrystal material being different from the first nanocrystal material and including a Group II-VI semiconductor compound or a Group III-V semiconductor compound; and an alloy interlayer disposed between the core and the shell, wherein the emission peak wavelength of the nanocrystal is shifted into a shorter wavelength than the emission peak wavelength of the core.
Abstract:
A color filter including a first region configured to emit a first light, a second region configured to emit a second light having a longer wavelength than a wavelength of the first light, a third region configured to emit a third light having a longer wavelength than the wavelength of the second light, a first layer including two or more quantum dots, and a second layer formed on at least one surface of the first layer, wherein the first layer and the second layer are disposed in at least the second region and the third region.
Abstract:
A quantum dot includes a core-shell structure including a core including a first semiconductor nanocrystal and a shell disposed on the core, and including a material at least two different halogens, and the quantum dot does not include cadmium.
Abstract:
An optical element includes a plurality of nanowires disposed in the form of an array and a light emitting material disposed on the nanowires, where the nanowires are longitudinally aligned in the array to linearly polarize at least a portion of light emitted from the light emitting material, and an electronic device includes the optical element.
Abstract:
A backlight unit for a liquid crystal display device, the backlight unit including: an light emitting diode (“LED”) light source; a light conversion layer disposed separate from the LED light source to convert light emitted from the LED light source to white light and to provide the white light to the liquid crystal panel; and a light guide panel disposed between the LED light source and the light conversion layer, wherein the light conversion layer includes a semiconductor nanocrystal and a polymer matrix, and wherein the polymer matrix includes a first polymerized polymer of a first monomer including at least two thiol (—SH) groups, each located at a terminal end of the first monomer, and a second monomer including at least two unsaturated carbon-carbon bonds, each located at a terminal end of the second monomer.
Abstract:
A method of grinding a semiconductor nanocrystal-polymer composite, the method including obtaining a semiconductor nanocrystal-polymer composite including a semiconductor nanocrystal and a first polymer, contacting the semiconductor nanocrystal-polymer composite with an inert organic solvent; and grinding the semiconductor nanocrystal-polymer composite in the presence of the inert organic solvent to grind the semiconductor nanocrystal-polymer composite.
Abstract:
Disclosed herein is a nanocrystal comprising a core comprising a first nanocrystal material, the first nanocrystal material including a Group II-VI semiconductor compound or a Group III-V semiconductor compound; a shell being disposed upon a surface of the core and comprising a second nanocrystal material, the second nanocrystal material being different from the first nanocrystal material and including a Group II-VI semiconductor compound or a Group III-V semiconductor compound; and an alloy interlayer disposed between the core and the shell, wherein the emission peak wavelength of the nanocrystal is shifted into a shorter wavelength than the emission peak wavelength of the core.
Abstract:
A composition comprising: a first monomer comprising at least three thiol groups, each located at a terminal end of the first monomer, wherein the first monomer is represented by the following Chemical Formula 1-1: a second monomer comprising at least two unsaturated carbon-carbon bonds, each located at a terminal end of the second monomer, wherein the second monomer is represented by the following Chemical Formula 2: wherein in Chemical Formulae 1 and 2 groups R2, Ra to Rd, Ya to Yd, L1′ and L2, X and variables k3 and k4 are the same as described in the specification, and a first light emitting particle, wherein the first light emitting particle consists of a semiconductor nanocrystal comprising a Group II-VI compound, a Group III-V compound, a Group IV-VI compound, or a combination thereof, wherein the first light emitting particle has a core/shell structure having a first semiconductor nanocrystal being surrounded by a second semiconductor nanocrystal, and the first semiconductor nanocrystal being different from the second semiconductor nanocrystal.
Abstract:
Disclosed herein is a quantum dot phosphor for light emitting diodes, which includes quantum dots and a solid substrate on which the quantum dots are supported. Also, a method of preparing the quantum dot phosphor is provided. Since the quantum dot phosphor of the current invention is composed of the quantum dots supported on the solid substrate, the quantum dots do not aggregate when dispensing a paste obtained by mixing the quantum dots with a paste resin for use in packaging of a light emitting diode. Thereby, a light emitting diode able to maintain excellent light emitting efficiency can be manufactured.