Abstract:
Provided is a semiconductor optical modulator device in which a resistor for impedance matching is integrated in a device in order to improve performance and to reduce cost during the fabrication of an ultra high speed optical modulator module. A doped layer in an epitaxial layer of the optical modulator device is used as a resistor for impedance matching. According to this method, it is possible to more easily realize an optical device compared with optical device fabrication processes in which additional resistors are used in the outside and the inside of the device for impedance matching.
Abstract:
Provided are a semiconductor package having a semiconductor chip, a rear surface of which is molded, and a method of fabricating the semiconductor package. The semiconductor package includes a semiconductor chip including a wafer and a metal pad formed on a front surface of the wafer; a solder ball formed on a front surface of the wafer, and electrically connected to the metal pad; and a reinforcing member formed on a rear surface of the wafer. The reinforcing member is formed of an epoxy molding compound, and the reinforcing member protrudes at least 5 μm from side surfaces of the semiconductor chip.
Abstract:
Embodiments of the present invention are directed to a film substrate of a semiconductor package. The film substrate of the semiconductor package comprises a thin film insulating substrate and a thin copper circuit pattern. An inter-pattern groove between the thin copper circuit patterns is formed by laser etching. Accordingly, the embodiment improves electrical contact between the film substrate and a semiconductor chip mounted thereon, and improves the manufacturing process for the film substrate by adopting a simple laser machining to form the thin copper circuit pattern in lieu of a traditional wet-etching process that undergoes complex lithography steps.
Abstract:
A method for manufacturing a tape wiring board in accordance with the present invention may employ an imprinting process in forming a wiring pattern, thereby reducing the number of processes for manufacturing a tape wiring board and allowing the manufacturing process to proceed in a single production line. Therefore, the manufacturing time and cost may be reduced. A profile of the wiring pattern may be determined by the shape of an impression pattern of a mold. This may establish the top width of inner and outer leads and incorporate fine pad pitch. Although ILB and OLB process may use an NCP, connection reliability may be established due to the soft and elastic wiring pattern.
Abstract:
A wafer level chip package has a redistrubution substrate, at least one lower semiconductor chip stacked on the redisctribution substrate, and an uppermost semiconductor chip. The redistribution substrate has a redistribution layer and substrate pads connected to the redistribution layer. The lower semiconductor chip is stacked on the redistribution layer and may have through holes for partially exposing the redistribution layer, the through holes corresponding to the substrate pads, and having conductive filling material filling the through holes. The uppermost semiconductor chip may have the same elements as the lower semiconductor chip, and may be flip chip bonded to the through holes. The package may further have a filling layer for filling areas between chips, a metal lid for coating most of the external surfaces, and external connection terminals formed on and electrically connected to the exposed redistribution layer from the first dielectric layer of the redistribution substrate.