Abstract:
Provided are methods for etching films comprising transition metals which help to minimize higher etch rates at the grain boundaries of polycrystalline materials. Certain methods pertain to amorphization of the polycrystalline material, other pertain to plasma treatments, and yet other pertain to the use of small doses of halide transfer agents in the etch process.
Abstract:
A first portion of a multiple cycle spacer is formed on a sidewall of a patterned feature over a substrate. A spacer layer is deposited on the first portion using a first plasma process. The spacer layer is etched to form a second portion of the multiple cycle spacer on the first portion using a second plasma process. A cycle comprising depositing and etching of the spacer layer is continuously repeated until the multiple cycle spacer is formed.
Abstract:
A method is provided for forming an interconnect structure for use in semiconductor devices. The method starts with forming a low-k bulk dielectric layer on a substrate and then forming a trench in the low-k bulk dielectric layer. A liner layer is formed on the low-k bulk dielectric layer being deposited conformally to the trench. A copper layer is formed on the liner layer filling the trench. Portions of the copper layer and liner layer are removed to form an upper surface of the low-k bulk dielectric layer, the liner layer, and the copper layer. A metal containing dielectric layer is formed on the upper surface of the low-k bulk dielectric layer, the liner layer, and the copper layer.
Abstract:
Provided are methods for etching films comprising transition metals which help to minimize higher etch rates at the grain boundaries of polycrystalline materials. Certain methods pertain to amorphization of the polycrystalline material, other pertain to plasma treatments, and yet other pertain to the use of small doses of halide transfer agents in the etch process.
Abstract:
Embodiments of the present invention provide a methods for forming silicon recess structures in a substrate with good process control, particularly suitable for manufacturing three dimensional (3D) stacking of fin field effect transistor (FinFET) for semiconductor chips. In one embodiment, a method of forming recess structures in a substrate includes etching a first portion of a substrate defined by a second portion formed in the substrate until a doping layer formed in the substrate is exposed.
Abstract:
Methods are described for forming “air gaps” between adjacent metal lines on patterned substrates. The common name “air gap” will be used interchangeably with the more technically accurate “gas pocket” and both reflect a variety of pressures and elemental ratios. The air gaps are produced within narrow gaps between copper lines while wide gaps retain dielectric material. Retention of the dielectric material within the wide gaps enables formation of a desirable planar top surface. Using a hardmask layer and a selective dry-etch process enables a wet processing step to be avoided right before the formation of the air gaps. The air gaps can have a dielectric constant approaching one, favorably reducing interconnect capacitance compared with typical low-k dielectric materials.
Abstract:
Methods for etching an etching stop layer disposed on the substrate using a cyclical etching process are provided. In one embodiment, a method for etching an etching stop layer includes performing a treatment process on the substrate having a silicon nitride layer disposed thereon by supplying a treatment gas mixture into the processing chamber to treat the silicon nitride layer, and performing a chemical etching process on the substrate by supplying a chemical etching gas mixture into the processing chamber, wherein the chemical etching gas mixture includes at least an ammonium gas and a nitrogen trifluoride, wherein the chemical etching process etches the treated silicon nitride layer.
Abstract:
A method of selectively dry etching exposed substrate material on patterned heterogeneous structures is described. The method includes a plasma process prior to a remote plasma etch. The plasma process may use a biased plasma to treat an untreated substrate portion in a preferred direction to form a treated substrate portion. Subsequently, a remote plasma is formed using a fluorine-containing precursor to etch the treated substrate portion using the plasma effluents. By implementing biased plasma processes, the normally isotropic etch may be transformed into a directional (anisotropic) etch despite the remote nature of the plasma excitation during the etch process.
Abstract:
A method of selectively removing fluorocarbon layers from overlying low-k dielectric material is described. These protective plasma treatments (PPT) are delicate alternatives to traditional post-etch treatments (PET). The method includes sequential exposure to (1) a local plasma formed from a silicon-fluorine precursor followed by (2) an exposure to plasma effluents formed in a remote plasma from a fluorine-containing precursor. The remote plasma etch (2) has been found to be highly selective of the residual material following the local plasma silicon-fluorine exposure. The sequential process (1)-(2) avoids exposing the low-k dielectric material to oxygen which would undesirably increase its dielectric constant.
Abstract:
Methods of forming material junctions for magnetic memory devices are described. The methods involve providing a material stack including a bottom magnetic tunneling junction layer, a tunneling barrier layer, and a top magnetic tunneling junction layer (from bottom to top) on a substrate. The top magnetic tunneling junction layer is patterned to form a top magnetic tunneling junction and then a dielectric spacer layer may be formed over the top magnetic tunneling junction. The dielectric spacer is etched to leave a vertical dielectric spacer to maintain electrical separation between the top magnetic tunneling junction and the bottom magnetic tunneling junction during and following subsequent etching/processing. In an alternative embodiment the spacer layer is lithographically defined.