Abstract:
An object is to achieve low power consumption and a long lifetime of a semiconductor device having a wireless communication function. The object can be achieved in such a manner that a battery serving as a power supply source and a specific circuit are electrically connected to each other through a transistor in which a channel formation region is formed using an oxide semiconductor. The hydrogen concentration of the oxide semiconductor is lower than or equal to 5×1019 (atoms/cm3). Therefore, leakage current of the transistor can be reduced. As a result, power consumption of the semiconductor device in a standby state can be reduced. Further, the semiconductor device can have a long lifetime.
Abstract:
To provide a novel nonvolatile latch circuit and a semiconductor device using the nonvolatile latch circuit, a nonvolatile latch circuit includes a latch portion having a loop structure where an output of a first element is electrically connected to an input of a second element, and an output of the second element is electrically connected to an input of the first element; and a data holding portion for holding data of the latch portion. In the data holding portion, a transistor using an oxide semiconductor as a semiconductor material for forming a channel formation region is used as a switching element. In addition, an inverter electrically connected to a source electrode or a drain electrode of the transistor is included. With the transistor, data held in the latch portion can be written into a gate capacitor of the inverter or a capacitor which is separately provided.
Abstract:
It is an object to provide a transmissive liquid crystal display device in which power consumption is reduced and deterioration in display quality is suppressed. As a backlight, a surface-emission light source is employed. The light source is a light source which performs surface light emission, so that the light emission area is large. Accordingly, the backlight can effectively radiate heat. Thus, even in the case where an image signal is not input to a pixel for a long period, the pixel can hold the image signal. In other words, both a reduction in power consumption and a suppression of deterioration in display quality can be realized.
Abstract:
An object is at least one of a longer data retention period of a memory circuit, a reduction in power consumption, a smaller circuit area, and an increase in the number of times written data can be read to one data writing operation. The memory circuit has a first field-effect transistor, a second field-effect transistor, and a rectifier element including a pair of current terminals. A data signal is input to one of a source and a drain of the first field-effect transistor. A gate of the second field-effect transistor is electrically connected to the other of the source and the drain of the first field-effect transistor. One of the pair of current terminals of the rectifier element is electrically connected to a source or a drain of the second field-effect transistor.
Abstract:
The semiconductor device includes: a transistor having an oxide semiconductor layer; and a logic circuit formed using a semiconductor material other than an oxide semiconductor. One of a source electrode and a drain electrode of the transistor is electrically connected to at least one input of the logic circuit, and at least one input signal is applied to the logic circuit through the transistor. The off-current of the transistor is preferably 1×10−13 A or less.
Abstract:
A highly reliable semiconductor device that is suitable for high-speed operation is provided. A semiconductor device includes a first circuit, a second circuit, and a third circuit. The first circuit has an arithmetic processing function. The second circuit includes a memory circuit. The memory circuit includes a transistor which includes a first conductor, a second conductor, a first insulator, a second insulator, and a semiconductor. The first conductor includes a region overlapping the semiconductor with the first insulator positioned between the first conductor and the semiconductor. The second conductor includes a region overlapping the semiconductor with the second insulator positioned between the second conductor and the semiconductor. The first conductor is capable of selecting on or off of the transistor. The third circuit is electrically connected to the second conductor, and is capable of changing the potential of the second conductor in synchronization with an operation of the transistor.
Abstract:
An oxide semiconductor layer which is intrinsic or substantially intrinsic and includes a crystalline region in a surface portion of the oxide semiconductor layer is used for the transistors. An intrinsic or substantially intrinsic semiconductor from which an impurity which is to be an electron donor (donor) is removed from an oxide semiconductor and which has a larger energy gap than a silicon semiconductor is used. Electrical characteristics of the transistors can be controlled by controlling the potential of a pair of conductive films which are provided on opposite sides from each other with respect to the oxide semiconductor layer, each with an insulating film arranged therebetween, so that the position of a channel formed in the oxide semiconductor layer is determined.
Abstract:
It is an object of one embodiment of the present invention to manufacture a light-emitting display device by simplifying a manufacturing process of a transistor, without an increase in the number of steps as well as the number of photomasks as compared to those in the conventional case. A step for processing a semiconductor layer into an island shape is omitted by using a high-resistance oxide semiconductor which is intrinsic or substantially intrinsic for the semiconductor layer, used to form transistors. Formation of an opening in the semiconductor layer or an insulating layer formed over the semiconductor layer and etching of an unnecessary portion of the semiconductor layer are performed at the same time; thus, the number of photolithography steps is reduced.
Abstract:
The display device includes a gate electrode, a gate insulating film provided over the gate electrode, a semiconductor film provided over the gate insulating film to overlap with the gate electrode, an island-shaped first insulating film provided over the semiconductor film to overlap with the gate electrode, a first conductive film provided over the semiconductor film, a pair of second conductive films which is provided over the semiconductor film and between which the first insulating film is sandwiched, and a second insulating film provided over the first insulating film, the first conductive film, and the pair of second conductive films. In the second insulating film and the semiconductor film, an opening portion which is positioned between the first conductive film and the one or the other of the pair of second conductive films is provided.
Abstract:
A semiconductor device with a small cell area and excellent data read/write capability is achieved. In the semiconductor device, a wiring for writing data is provided, and a first transistor with a low off-state current is turned on to supply data to a gate of a second transistor and is turned off so that electric charge corresponding to data is retained. Moreover, a wiring for reading data is provided, and a third transistor is turned on so that data is read out in accordance with the on/off state of the second transistor retaining the electric charge. With this configuration, data write and data read are achieved in the same cycle.